Description Usage Arguments Value Note Author(s) See Also Examples
Outlier detection with ensemble partial least squares.
1 2 |
x |
Predictor matrix. |
y |
Response vector. |
maxcomp |
Maximum number of components included within each model. If not specified, will use the maximum number possible (considering cross-validation and special cases where n is smaller than p). |
cvfolds |
Number of cross-validation folds used in each model
for automatic parameter selection, default is |
reptimes |
Number of models to build with Monte-Carlo resampling or bootstrapping. |
method |
Resampling method. |
ratio |
Sampling ratio used when |
parallel |
Integer. Number of CPU cores to use.
Default is |
A list containing four components:
error.mean
- error mean for all samples (absolute value)
error.median
- error median for all samples
error.sd
- error sd for all samples
predict.error.matrix
- the original prediction error matrix
To maximize the probablity that each observation can
be selected in the test set (thus the prediction uncertainty
can be measured), please try setting a large reptimes
.
Nan Xiao <https://nanx.me>
See enpls.fs
for measuring feature importance with
ensemble partial least squares regressions.
See enpls.fit
for fitting ensemble partial least
squares regression models.
1 2 3 4 5 6 7 8 9 |
Outlier Detection by Ensemble Partial Least Squares
---
Mean residual for each sample:
[1] 5.84154296 12.47806291 3.81790035 4.22732663 3.64200539 1.45816568
[7] 3.82228162 0.18208175 1.80999574 0.06827347 1.58355387 0.09719581
[13] 4.46895125 1.09506599 0.08924130 4.59801048 1.40660823 0.33483739
[19] 1.30951672 2.56468327 0.18103997 0.06311843 2.58922775 0.40418221
[25] 0.41989207 3.77170259 0.34084568 0.79670820 3.68565693 0.63575832
[31] 2.77204396 0.14174109 0.47094341 0.36565988 0.79524498 1.44100432
[37] 2.10865878 1.68203946 2.07017919 0.05239392 0.83380468 2.28572307
[43] 1.29343207 2.08150687 1.94819654 1.37337764 1.65380364 1.67898556
[49] 2.94098977 2.15550724 1.01751815 1.07208796 6.38985197 1.90876411
[55] 1.11273054 1.04644571 2.96215013 4.30769213 0.77938100 0.15775730
[61] 0.04739812 3.01216209 17.06483526 6.32480343 0.82381142 3.01461622
[67] 2.36442108 0.29542554 1.88379932 1.50950251 0.33608295 1.07837451
[73] 0.18021758 1.98601162 0.09532529 3.03828609 0.85836585 1.27847456
[79] 2.06976436 1.40505134 0.05343708 0.11830765 6.53174820 0.59329915
[85] 2.36768716 1.84198659 1.53185852 2.06433590 0.56460902 0.65894607
[91] 1.17386761 4.19784770 0.75272292 3.07360962 7.66314227 1.77243645
[97] 3.10243664 1.88351042 1.46783449 0.86665889 1.06975279 1.73141152
[103] 1.25242872 0.72679447 0.67700199 1.90487897 0.32623722 0.17275968
[109] 3.31546253 2.65631581 2.19352580 3.03167601 3.40983960 2.58540753
[115] 1.34987358 0.12336024 4.05420830 1.79451991 2.78250581 4.38811945
[121] 2.08185290 3.88090100 0.09822433 2.76353595 0.82363858 1.57060169
[127] 0.35505686 0.38341842 0.69607475 4.46346442 5.32305428 4.97492485
[133] 1.36303078 0.57191267 3.20915540 0.16609063 0.64980356 4.39615174
[139] 4.89497357 6.47747600 3.03211857 0.63532671 2.40129215 3.49868967
[145] 1.00230619 1.27776071 4.12158668 3.19242117 0.11901725 3.43670453
[151] 2.48235258 2.43879266 0.39595805 1.57980158 9.43447488 2.14978953
[157] 2.27536927 1.33705528 2.48581170 3.23826480 0.74783113 0.78230002
[163] 6.18085104 1.63200583 5.86373399 1.14837185 12.52970752 7.91332023
[169] 4.53028748 0.57666780 1.23241782 3.86693174 3.51306569 9.07703932
[175] 6.18490920 3.94541124 4.97217452 0.88037862 0.52783855 2.36473984
[181] 2.31003275 1.40199253 3.54404560 0.95981248 5.13350268 0.89141571
[187] 2.91237604 3.28767279 1.42116708 0.34381605 4.45188124 0.63585551
[193] 4.59764059 1.42524186 3.77003282 0.35955457 10.41408740 4.15160946
[199] 8.12371623 3.66031387 3.50346485 3.23856551 1.25130157 5.08311486
[205] 1.68704502 3.11000898 5.54746155
---
Residual SD for each sample:
[1] 3.7580716 3.0433650 2.3043098 2.8376277 2.0894200 0.7637105 1.0040221
[8] 0.8169191 1.6294251 0.8097289 1.2067250 0.7404114 1.2197478 0.8259262
[15] 0.7240018 1.1471616 0.7482086 0.4912596 1.0309151 0.6357447 0.6051036
[22] 0.4166593 0.9054018 0.5448250 0.4890459 0.8880332 0.6142908 0.5993957
[29] 0.9151949 0.5277489 0.6814105 0.4482781 0.6346327 0.3005939 0.7013371
[36] 0.7939135 0.9410419 0.3764690 0.7970728 0.5895069 0.5967042 0.3654937
[43] 0.4758814 0.8378033 0.4075352 0.3555695 0.9441589 0.4543417 0.4509223
[50] 0.5245863 0.4479285 0.6817372 0.5206553 1.2516662 0.5110322 0.4063994
[57] 0.4387259 0.3613608 0.2977674 0.4327901 0.5932707 0.4962887 0.3126776
[64] 0.4020826 1.6003312 0.5284284 0.4339982 0.4858774 0.4382184 0.4319390
[71] 0.4761075 0.5556712 0.7688055 0.4521190 1.2368325 0.4586641 0.6084671
[78] 0.4137158 0.4639920 0.3352623 0.2820102 0.4182374 0.5502604 0.5094407
[85] 0.6344731 0.3365829 0.2515227 0.7153839 0.4402040 0.4166187 0.2995878
[92] 0.6704716 0.8008601 0.3388109 0.3262772 0.3520078 0.5061787 0.4852360
[99] 0.3079973 0.3934575 0.6198711 0.4237787 0.2720384 0.4787153 0.6637957
[106] 0.3712932 0.4683990 0.6202247 0.2721590 0.6097487 0.3722277 0.3373905
[113] 0.5557479 0.4808776 0.8486943 0.7396232 1.0609978 0.7444840 1.1927777
[120] 1.8089168 0.8603471 0.6739453 0.5404603 0.6503700 0.7632484 1.4585867
[127] 0.3593919 0.2831706 0.8168057 0.3198876 0.8321675 1.5685052 0.8006221
[134] 0.4769935 0.6003442 0.4634613 0.7788567 0.3633180 0.5020792 0.9293973
[141] 0.7229372 0.5199577 0.2625200 0.6063737 0.5104528 0.4353744 0.2733955
[148] 0.4343043 0.4741539 0.6842340 0.4453425 0.4175046 0.8309930 0.3047612
[155] 0.6471711 0.5918122 0.4111067 0.8691659 0.5743590 0.9864279 1.0990263
[162] 0.4793320 1.1497748 0.4111816 0.9485608 0.5504446 1.0434053 0.4757830
[169] 0.8209757 3.5441632 0.6384631 0.8944721 0.7012970 0.8933153 0.7755183
[176] 0.6341576 0.4650354 0.6619321 0.3599368 1.3004339 0.7067686 0.4449671
[183] 0.4325338 0.5052929 0.6256768 0.3037975 0.2971248 1.6346700 0.4998850
[190] 0.7110678 0.2831014 0.2707466 0.5343123 0.5010535 0.6825202 0.5588634
[197] 1.8977247 0.3210785 0.5229016 0.4318806 0.6036395 0.8095024 0.3457949
[204] 0.5229946 0.9623443 0.5953698 0.4750229
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.