ergm.estfun: Compute the Sample Estimating Function Values of an ERGM. In ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks

 ergm.estfun R Documentation

Compute the Sample Estimating Function Values of an ERGM.

Description

The estimating function for an ERGM is the score function: the gradient of the log-likelihood, equalling \eta'(\theta)^\top \{g(y)-\mu(\theta)\}, where g(y) is a p-vector of observed network sufficient statistic, \mu(\theta) is the expected value of the sufficient statistic under the model for parameter value \theta, and \eta'(\theta) is the p by q Jacobian matrix of the mapping from curved parameters to natural parmeters. If the model is linear, all non-offset statistics are passed. If the model is curved, the score estimating equations (3.1) by Hunter and Handcock (2006) are given instead.

Usage

ergm.estfun(stats, theta, model, ...)

## S3 method for class 'numeric'
ergm.estfun(stats, theta, model, ...)

## S3 method for class 'matrix'
ergm.estfun(stats, theta, model, ...)

## S3 method for class 'mcmc'
ergm.estfun(stats, theta, model, ...)

## S3 method for class 'mcmc.list'
ergm.estfun(stats, theta, model, ...)


Arguments

 stats An object representing sample statistics with observed values subtracted out. theta Model parameter q-vector. model An ergm_model object or its etamap element. ... Additional arguments for methods.

Value

An object of the same class as stats containing q-vectors of estimating function values.

Methods (by class)

• ergm.estfun(numeric): Method for numeric vectors of length p.

• ergm.estfun(matrix): Method for matrices with p columns.

• ergm.estfun(mcmc): Method for mcmc objects with p variables.

• ergm.estfun(mcmc.list): Method for mcmc.list objects with p variables.

ergm documentation built on May 31, 2023, 8:04 p.m.