| ergm.estfun | R Documentation |
The estimating function for an ERGM is the score function: the
gradient of the log-likelihood, equalling \eta'(\theta)^\top
\{g(y)-\mu(\theta)\}, where g(y) is a p-vector of
observed network sufficient statistic, \mu(\theta) is the
expected value of the sufficient statistic under the model for
parameter value \theta, and \eta'(\theta) is the
p by q Jacobian matrix of the mapping from curved
parameters to natural parmeters. If the model is linear, all
non-offset statistics are passed. If the model is curved, the score
estimating equations (3.1) by Hunter and Handcock (2006) are given
instead.
ergm.estfun(stats, theta, model, ...)
## S3 method for class 'numeric'
ergm.estfun(stats, theta, model, ...)
## S3 method for class 'matrix'
ergm.estfun(stats, theta, model, ...)
## S3 method for class 'mcmc'
ergm.estfun(stats, theta, model, ...)
## S3 method for class 'mcmc.list'
ergm.estfun(stats, theta, model, ...)
stats |
An object representing sample statistics with observed values subtracted out. |
theta |
Model parameter |
model |
An |
... |
Additional arguments for methods. |
An object of the same class as stats containing
q-vectors of estimating function values.
ergm.estfun(numeric): Method for numeric vectors of length p.
ergm.estfun(matrix): Method for matrices with p columns.
ergm.estfun(mcmc): Method for mcmc objects with p variables.
ergm.estfun(mcmc.list): Method for mcmc.list objects with p variables.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.