Nothing
#' Estimate meta-analytic standardized mean difference across multiple
#' two group studies (all paired, all independent, or a mix).
#'
#' @description
#' `meta_d2` is suitable for synthesizing across multiple two-group studies
#' (paired or independent) with a continuous outcome measure but where not
#' all studies are measured on the same scale, and instead the magnitude of
#' difference for each study is expressed as d_s or d_avg.
#'
#'
#' @details
#' Once you generate an estimate with this function, you can visualize
#' it with [esci::plot_meta()].
#'
#'
#' Each study's effect size should be expressed as:
#' Cohen's d_s: (comparison_mean - reference_mean) / sd_pooled
#' or
#' Cohen_'s d_avg: (comparison_mean - reference_mean) / sd_avg
#'
#' To enter d_s, set assume_equal_variance to TRUE
#' To enter d_avg, set assume_equal_variance to FALSE
#'
#' And the d values should all be corrected for bias.
#' The function [esci::CI_smd_ind_contrast()] can assist with converting
#' raw data from each study to d_s or d_avg with bias correction. It also
#' has more details on calculation of these forms of d and their CIs.
#'
#'
#' The meta-analytic effect size, confidence interval and heterogeneity
#' estimates all come from [metafor::rma()].
#'
#' The diamond ratio and its confidence interval come from
#' [esci::CI_diamond_ratio()].
#'
#'
#' @param data A data frame or tibble
#' @param ds Set of bias-adjusted cohen's d_s or d_avg values, 1 for each study
#' @param comparison_ns Set of comparison_group sample sizes, positive integers,
#' 1 for each study
#' @param reference_ns Set of reference_groups sample sizes, positive integers,
#' 1 for each study
#' @param r optional correlation between measures for w-s studies, NA otherwise
#' @param labels Optional set of labels, 1 for each study
#' @param moderator Optional factor as a categorical moderator; should have k >
#' 2 per group
#' @param contrast Optional vector specifying a contrast between moderator
#' levels
#' @param effect_label Optional character providing a human-friendly label for
#' the effect
#' @param random_effects Boolean; TRUE for a random effects model; otherwise
#' fixed effects
#' @param assume_equal_variance Defaults to FALSE
#' @param conf_level The confidence level for the confidence interval. Given in
#' decimal form. Defaults to 0.95.
#'
#'
#' @inherit meta_any return
#'
#'
#' @examples
#' # Data set -- see Introduction to the New Statistics, 1st edition
#' data("data_damischrcj")
#'
#' # Meta-analysis, random effects, assuming equal variance, no moderator
#' estimate <- esci::meta_d2(
#' data = esci::data_damischrcj,
#' ds = "Cohen's d unbiased",
#' comparison_ns = "n Control",
#' reference_ns = "n Lucky",
#' labels = Study,
#' assume_equal_variance = TRUE,
#' random_effects = TRUE
#' )
#'
#' # Forest plot
#' myplot_forest <- esci::plot_meta(estimate)
#'
#'
#' # Add a categorical moderator
#' estimate_moderator <- esci::meta_d2(
#' data = esci::data_damischrcj,
#' ds = "Cohen's d unbiased",
#' comparison_ns = "n Control",
#' reference_ns = "n Lucky",
#' labels = "Study",
#' moderator = "Research Group",
#' assume_equal_variance = TRUE,
#' random_effects = TRUE
#' )
#'
#' # Forest plot
#' myplot_forest_moderator <- esci::plot_meta(estimate_moderator)
#'
#' @export
meta_d2 <- function(
data,
ds,
comparison_ns,
reference_ns,
r = NULL,
labels = NULL,
moderator = NULL,
contrast = NULL,
effect_label = "My effect",
assume_equal_variance = FALSE,
random_effects = TRUE,
conf_level = .95
) {
# Initialization ---------------------------
# Create quosures and quonames.
# Stolen directly from dabestr
ds_enquo <- rlang::enquo(ds)
ds_quoname <- rlang::quo_name(ds_enquo)
comparison_ns_enquo <- rlang::enquo(comparison_ns)
comparison_ns_quoname <- rlang::quo_name(comparison_ns_enquo)
reference_ns_enquo <- rlang::enquo(reference_ns)
reference_ns_quoname <- rlang::quo_name(reference_ns_enquo)
r_enquo <- rlang::enquo(r)
r_quoname <- rlang::quo_name(r_enquo)
if (r_quoname == "NULL") r_quoname <- NULL
moderator_enquo <- rlang::enquo(moderator)
moderator_quoname <- rlang::quo_name(moderator_enquo)
if (moderator_quoname == "NULL") moderator_quoname <- NULL
labels_enquo <- rlang::enquo(labels)
labels_quoname <- rlang::quo_name(labels_enquo)
if (labels_quoname == "NULL") labels_quoname <- NULL
warnings <- NULL
# Input checks --------------------------------
# * data must be a data frame
# all rows with an NA a parameter column will be dropped, warning issued
# * the column ds must exist and be numeric,
# with > 1 row after NAs removed
# * the column comparison_ns must exist and be numeric integers > 0
# with > 1 row after NAs removed
# * the column reference_ns must exist and be numeric integers > 0
# with > 1 row after NAs removed
# * the column r is optional but if passed must be numeric fro -1 to 1 or NA
# * the column labels is optional, but if passed must exist and
# have > 1 row after NAs removed
# * the column moderator is optional; checks happen in meta_any
# * contrast should only be passed in moderator is defined; checks in meta_any
# * effect_label should be a character, checked in meta_any
# * random_effect must be a logical, TRUE or FALSE, checked in meta_any
# * conf_level must be a numeric >0 and < 1, checked in meta_any
# Check that data is a data.frame
# assume_equal_variance <- TRUE
esci_assert_type(data, "is.data.frame")
# ds
esci_assert_valid_column_name(data, ds_quoname)
esci_assert_column_type(data, ds_quoname, "is.numeric")
row_report <- esci_assert_column_has_valid_rows(
data,
ds_quoname,
lower = 2,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# reference_ns
esci_assert_valid_column_name(data, reference_ns_quoname)
esci_assert_column_type(data, reference_ns_quoname, "is.numeric")
if (!all(data[[reference_ns_quoname]] > 0, na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {reference_ns_quoname} are 0 or less.
These are rows {paste(which(data[[reference_ns_quoname]] <= 0), collapse = ', ')}.
")
)
}
if (!all(is.whole.number(data[[reference_ns_quoname]]), na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {reference_ns_quoname} are not integers.
These are rows {paste(which(!is.whole.number(data[[reference_ns_quoname]])), collapse = ', ')}.
")
)
}
row_report <- esci_assert_column_has_valid_rows(
data,
reference_ns_quoname,
lower = 2,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# comparison_ns
esci_assert_valid_column_name(data, comparison_ns_quoname)
esci_assert_column_type(data, comparison_ns_quoname, "is.numeric")
if (!all(data[[comparison_ns_quoname]] > 0, na.rm = TRUE)) {
stop(
glue::glue("
Some sample-size values in {comparison_ns_quoname} are 0 or less.
These are rows {paste(which(data[[comparison_ns_quoname]] <= 0), collapse = ', ')}.
")
)
}
if (!all(is.whole.number(data[[comparison_ns_quoname]]), na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {comparison_ns_quoname} are not integers.
These are rows {paste(which(!is.whole.number(data[[comparison_ns_quoname]])), collapse = ', ')}.
")
)
}
row_report <- esci_assert_column_has_valid_rows(
data,
comparison_ns_quoname,
lower = 2,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# r
if (!is.null(r_quoname)) {
esci_assert_valid_column_name(data, r_quoname)
esci_assert_column_type(data, r_quoname, "is.numeric")
if (!all(data[[r_quoname]] >= -1, na.rm = TRUE)) {
stop(
glue::glue("
Some r values in {r_quoname} are < -1.
These are rows {paste(which(data[[r_quoname]] < -1), collapse = ', ')}.
")
)
}
if (!all(data[[r_quoname]] <= 1, na.rm = TRUE)) {
stop(
glue::glue("
Some r values in {r_quoname} are > 1.
These are rows {paste(which(data[[r_quoname]] > 1), collapse = ', ')}.
")
)
}
check_n <- data[!is.na(data[[r_quoname]]), ]
if (!all(check_n[[reference_ns_quoname]] == check_n[[comparison_ns_quoname]])) {
stop(
glue::glue("
Some studies are passed with r but with n for reference and comparison not set the same.
The rows with r but mismatching n are:
{paste(check_n[which(check_n[[reference_ns_quoname]] != check_n[[comparison_ns_quoname]]), ], collapse = ', ')}.
")
)
}
}
# labels
if (is.null(labels_quoname)) {
data$esci_label <- paste("Study", seq(1:nrow(data)))
labels_quoname <- "esci_label"
} else {
esci_assert_valid_column_name(data, labels_quoname)
}
row_report <- esci_assert_column_has_valid_rows(
data,
labels_quoname,
lower = 2,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# moderator
moderator <- !is.null(moderator_quoname)
if (moderator) {
esci_assert_valid_column_name(data, moderator_quoname)
row_report <- esci_assert_column_has_valid_rows(
data,
moderator_quoname,
lower = 2,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
}
# Check options
esci_assert_type(assume_equal_variance, "is.logical")
report_smd <- TRUE
correct_bias <- FALSE
# All other checks happen in meta_any
# * additional constraints on moderator
# * contrast
# * effect_label
# * random_effects
# * conf_level
# Data prep------------------------------------------
# vector of passed column names
just_cols <- c(
labels_quoname,
ds_quoname,
reference_ns_quoname,
comparison_ns_quoname,
if (moderator) moderator_quoname,
if (!is.null(r_quoname)) r_quoname
)
# vector of cannonical column names
numeric_cols <- c(
"comparison_mean",
"reference_n",
"comparison_n",
if (!is.null(r_quoname)) "r"
)
col_names <- c(
"label",
numeric_cols,
if (moderator) "moderator"
)
# reduce data down to just needed columns with cannonical names
data <- data[ , just_cols]
colnames(data) <- col_names
data$reference_mean <- 0
data$comparison_sd <- 1
data$reference_sd <- 1
numeric_cols <- c(
numeric_cols,
"reference_mean",
"comparison_sd",
"reference_sd"
)
# Calculations -------------------------------------------------
# Get yi and vi for raw scores
es_data <- as.data.frame(
t(
apply(
X = data[ , numeric_cols],
MARGIN = 1,
FUN = apply_ci_stdmean_two,
assume_equal_variance = assume_equal_variance,
correct_bias = correct_bias,
conf_level = conf_level
)
)
)
res <- meta_any(
data = cbind(data, es_data),
yi = "yi",
vi = "vi",
moderator = !!if (moderator) "moderator" else NULL,
contrast = contrast,
labels = "label",
effect_label = effect_label,
effect_size_name = if(assume_equal_variance)"d_s" else "d_avg",
moderator_variable_name = if (moderator) moderator_quoname else "My moderator",
random_effects = random_effects,
conf_level = conf_level
)
data$label <- NULL
data$moderator <- NULL
data$reference_mean <- NULL
data$comparison_mean <- NULL
data$reference_sd <- NULL
data$comparison_sd <- NULL
if (is.null(r_quoname)) data$r <- NA
data$df <- es_data$df
data$p <- es_data$p
res$raw_data <- cbind(res$raw_data, es_data[ , c("LL", "UL")], data)
res$warnings <- c(res$warnings, warnings)
# Effect size labels
res$properties$effect_size_name <- if(assume_equal_variance)"d_s" else "d_avg"
res$properties$effect_size_name_html <- if(assume_equal_variance) "<i>d</i><sub>s</sub>" else "<i>d</i><sub>avg</sub>"
res$properties$effect_size_name_ggplot <- if(assume_equal_variance) "*d*<sub>s</sub>" else "*d*<sub>avg</sub>"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.