Nothing
#' Estimate a meta-analytic proportion of outcomes over multiple studies with
#' a categorical outcome variable.
#'
#'
#' @description
#' `meta_proportion` is suitable for synthesizing across multiple studies with
#' a categorical outcome variable. It takes as input the number of cases/events
#' and the number of samples in each study.
#'
#'
#' @details
#' Once you generate an estimate with this function, you can visualize
#' it with [esci::plot_meta()].
#'
#' The meta-analytic effect size, confidence interval and heterogeneity
#' estimates all come from [metafor::rma()].
#'
#'
#'
#' @param data A dataframe or tibble
#' @param cases A collection of cases/event counts, 1 per study, all integers,
#' all > 0
#' @param ns A collection of sample sizes, 1 per study, all integers > 2
#' @param labels An optional collection of study labels
#' @param moderator An optional factor to analyze as a categorical moderator,
#' must have k > 2 per groups
#' @param contrast An optional contrast to estimate between moderator levels;
#' express as a vector of contrast weights with 1 weight per moderator level.
#' @param effect_label Optional character giving a human-friendly name of
#' the effect being synthesized
#' @param random_effects TRUE for random effect model; FALSE for fixed effects
#' @param conf_level The confidence level for the confidence interval. Given in
#' decimal form. Defaults to 0.95.
#'
#'
#' @inherit meta_any return
#'
#'
#' @examples
#' # Data set: Replications of power on egocentric behavior
#' esci_meta_pdiff_two <- data.frame(
#' studies = c(
#' "Online",
#' "Original",
#' "Online Pilot",
#' "Exact replication"
#' ),
#' control_egocentric = c(
#' 33,
#' 4,
#' 4,
#' 7
#' ),
#' control_sample_size = c(
#' 101,
#' 33,
#' 10,
#' 53
#' ),
#' power_egocentric = c(
#' 48,
#' 8,
#' 4,
#' 11
#' ),
#' power_sample_size = c(
#' 105,
#' 24,
#' 12,
#' 56
#' ),
#' setting = as.factor(
#' c(
#' "Online",
#' "In-Person",
#' "Online",
#' "In-Person"
#' )
#' )
#' )
#'
#' # Meta-analysis, risk difference as effect size
#' estimate <- esci::meta_proportion(
#' esci_meta_pdiff_two,
#' power_egocentric,
#' power_sample_size,
#' studies
#' )
#'
#' # Forest plot
#' myplot_forest <- esci::plot_meta(estimate)
#'
#'
#' # Meta-analysis, risk difference as effect size, moderator (setting)
#' estimate_moderator <- esci::meta_proportion(
#' esci_meta_pdiff_two,
#' power_egocentric,
#' power_sample_size,
#' studies,
#' moderator = setting
#' )
#'
#' # Forest plot
#' myplot_forest_moderator <- esci::plot_meta(estimate_moderator)
#'
#'
#' @export
meta_proportion <- function(
data,
cases,
ns,
labels = NULL,
moderator = NULL,
contrast = NULL,
effect_label = "My effect",
random_effects = TRUE,
conf_level = .95
) {
# Initialization ---------------------------
# Create quosures and quonames.
# Stolen directly from dabestr
cases_enquo <- rlang::enquo(cases)
cases_quoname <- rlang::quo_name(cases_enquo)
ns_enquo <- rlang::enquo(ns)
ns_quoname <- rlang::quo_name(ns_enquo)
moderator_enquo <- rlang::enquo(moderator)
moderator_quoname <- rlang::quo_name(moderator_enquo)
if (moderator_quoname == "NULL") moderator_quoname <- NULL
labels_enquo <- rlang::enquo(labels)
labels_quoname <- rlang::quo_name(labels_enquo)
if (labels_quoname == "NULL") labels_quoname <- NULL
warnings <- NULL
# Input checks --------------------------------
# * data must be a data frame
# all rows with an NA a parameter column will be dropped, warning issued
# * the column cases must exist and be numeric, integer >= 0
# with > 1 row after NAs removed
# * the column ns must exist and be numeric integers > 0
# with > 1 row after NAs removed
# * the column labels is optional, but if passed must exist and
# have > 1 row after NAs removed
# * the column moderator is optional; checks happen in meta_any
# * contrast should only be passed in moderator is defined; checks in meta_any
# * effect_label should be a character, checked in meta_any
# * conf_level must be a numeric >0 and < 1, checked in meta_any
# Check that data is a data.frame
esci_assert_type(data, "is.data.frame")
# cases
esci_assert_valid_column_name(data, cases_quoname)
esci_assert_column_type(data, cases_quoname, "is.numeric")
row_report <- esci_assert_column_has_valid_rows(
data,
cases_quoname,
lower = 1,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
if (!all(data[[cases_quoname]] >= 0, na.rm = TRUE)) {
stop(
glue::glue("
Some case values in {cases_quoname} are < 0.
These are rows {paste(which(data[[cases_quoname]] < 0), collapse = ', ')}.
")
)
}
if (!all(is.whole.number(data[[cases_quoname]]), na.rm = TRUE)) {
stop(
glue::glue("
Some case values in {cases_quoname} are not integers.
These are rows {paste(which(!is.whole.number(data[[cases_quoname]])), collapse = ', ')}.
")
)
}
# ns
esci_assert_valid_column_name(data, ns_quoname)
esci_assert_column_type(data, ns_quoname, "is.numeric")
if (!all(data[[ns_quoname]] > 0, na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {ns_quoname} are 0 or less.
These are rows {paste(which(data[[ns_quoname]] <= 0), collapse = ', ')}.
")
)
}
if (!all(is.whole.number(data[[ns_quoname]]), na.rm = TRUE)) {
stop(
glue::glue("
Some n values in {ns_quoname} are not integers.
These are rows {paste(which(!is.whole.number(data[[ns_quoname]])), collapse = ', ')}.
")
)
}
row_report <- esci_assert_column_has_valid_rows(
data,
ns_quoname,
lower = 1,
na.rm = TRUE
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
tdata <- data[ , c(cases_quoname, ns_quoname)]
tdata <- tdata[complete.cases(tdata), ]
if (!all(tdata[[ns_quoname]] >= tdata[[cases_quoname]])) {
stop(
glue::glue("
Some sample sizes in {ns_quoname} are smaller than case counts in {cases_quoname}.
These are rows {paste(which(tdata[[ns_quoname]] < tdata[[cases_quoname]]), collapse = ', ')}.
")
)
}
# labels
if (is.null(labels_quoname)) {
data$esci_label <- paste("Study", seq(1:nrow(data)))
labels_quoname <- "esci_label"
} else {
esci_assert_valid_column_name(data, labels_quoname)
}
row_report <- esci_assert_column_has_valid_rows(
data,
labels_quoname,
lower = 1,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
# moderator
moderator <- !is.null(moderator_quoname)
if (moderator) {
esci_assert_valid_column_name(data, moderator_quoname)
row_report <- esci_assert_column_has_valid_rows(
data,
moderator_quoname,
lower = 1,
)
if (row_report$missing > 0) {
warnings <- c(warnings, row_report$warning)
warning(row_report$warning)
data <- data[-row_report$NA_rows, ]
}
}
# Check options
# All other checks happen in meta_any:
# * additional constraints on moderator
# * contrast
# * random_effects
# * conf_level
# Data prep------------------------------------------
# vector of passed column names
just_cols <- c(
labels_quoname,
cases_quoname,
ns_quoname,
if (moderator) moderator_quoname
)
# vector of canonical column names
numeric_cols <- c(
"cases",
"N"
)
col_names <- c(
"label",
numeric_cols,
if (moderator) "moderator"
)
# reduce data down to just needed columns with cannonical names
data <- data[ , just_cols]
colnames(data) <- col_names
# Calculations -------------------------------------------------
# Get yi and vi for raw scores
es_data <- as.data.frame(
t(
apply(
X = data[ , numeric_cols],
MARGIN = 1,
FUN = apply_ci_prop1,
conf_level = conf_level
)
)
)
res <- meta_any(
data = cbind(data, es_data),
yi = "yi",
vi = "vi",
moderator = !!if (moderator) "moderator" else NULL,
labels = "label",
effect_label = effect_label,
effect_size_name = "P",
moderator_variable_name = if (moderator) moderator_quoname else "My moderator",
contrast = contrast,
random_effects = random_effects,
conf_level = conf_level
)
# Clean up -----------------------------
clear_cols <- c(
"label",
"moderator"
)
data[ , clear_cols] <- NULL
data$P_adjusted <- es_data$P_adjusted
res$raw_data <- cbind(res$raw_data, es_data[ , c("LL", "UL")], data)
res$warnings <- c(res$warnings, warnings)
# Effect size labels
res$properties$effect_size_name <- "P"
res$properties$effect_size_name_html <- "<i>P</i>"
res$properties$effect_size_name_ggplot <- "*P*"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.