Nothing
test_personsItems <- function(items=NULL,
dset=NULL,
na.rm=TRUE,
model=NULL,
p.par=NULL,
modelType=NULL,
gap_prop=0,
extremes=TRUE,
estimation_param=NULL){
# This is an internal function that is not intended to be called by users.
# It is nevertheless exported so that it can be run in the parallelization
# workers. However, the function is not documented in the manual.
#' checks the relationship between the person parameter distribution and
#' the item (or: threshold) locations for defined criteria
#' @param items a numeric vector containing the index numbers of the items
#' in dset that are used to fit the model
#' @param dset a data.frame containing the data
#' @param na.rm a boolean value. If TRUE, all cases with any NA are removed
#' (na.omit). If FALSE, only cases with full NA responses are removed
#' @param model on object of a fit Rasch model, estimated with the packages
#' 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel,
#' 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of
#' modelType. If 'model' is provided, this model is used. If NULL, a model is
#' fit using 'dset' and 'items'.
#' @param p.par a person parameter object matching the class of 'model'. If
#' NULL, the person parameters will be estimated.
#' @param modelType a character value defining the rasch model to fit.
#' Possible values: "RM", "PCM", "RSM".
#' @param gap_prop a numeric value between 0 and 1 that sets the criterion
#' for the minimum proportion of neighboring person parameters with an
#' item/threshold location in between. If set to 0, this criterion will
#' not be checked.
#' @param extremes a boolean value indicating if a check for the
#' item/threshold locations left of the 2nd lowest and right of the 2nd
#' highest person parameter.
#' @param estimation_param options for parameter estimation using
#' \link{estimation_control}
#' @return if the criteria are met, a list containing 3 elements is returned:
#' the item combination that was tested, a list of the class the model was
#' estimated with (depending on modelType and estimation_param$est) with the
#' fit model and a list with a person parameter object (depending on
#' estimation_param$est). If the criteria are not met, NULL is returned.
#' @export
#' @keywords internal
# This function implements one of the tests that are executed via the 'tests'
# argument of the exhaustive_tests() function. It is an internal function, a
# call by the user is not indicated. It is nevertheless exported in order to
# work in parallelization. However, it is not included in the package
# documentation (roxygen2 keyword 'internal').
if (inherits(items, "list")){
model <- items[[2]]
p.par <- items[[3]]
items <- items[[1]]
}
if (is.null(model)){
ds_test <- dset[items]
if (na.rm==TRUE){ds_test<- stats::na.omit(ds_test)
} else{ds_test <- ds_test[rowSums(is.na(ds_test)) < ncol(ds_test)-1, ]}
model <- fit_rasch(X=ds_test, modelType=modelType,
estimation_param=estimation_param)
}
### get person parameter object if not already existing
if (!is.null(model) & is.null(p.par)){
if (estimation_param$est=="pairwise"){
p.par <- pairwise::pers(model)
} else if (estimation_param$est=="eRm"){
try(suppressWarnings({
p.par <- eRm::person.parameter(model)
}), silent=TRUE)
} else{ # psychotools
p.par <- ppar.psy(model)
}
}
### get ordered unique person parameters and item thresholds
if (!is.null(p.par)){
if (estimation_param$est=="pairwise"){
if (exists("p.par")){
perspars <- sort(unique(p.par$pers$WLE))
threshs <- as.vector(sort(model$threshold))
}
} else if (estimation_param$est=="eRm"){
perspars <- sort(unique(unlist(p.par$thetapar)))
if (modelType=="RM"){
threshs <- as.vector(sort(model$betapar))
} else{
threshs <- as.vector(sort(eRm::thresholds(model)$threshpar))
}
} else if (estimation_param$est=="psychotools"){
perspars <- sort(unique(unlist(p.par$theta)))
threshs <- as.vector(sort(unlist(model$thresholds)))
}
}
PImapExtremes <- TRUE
gap_crit <- TRUE
if (exists("perspars")){
if (extremes==TRUE){
# checks if there are items (thresholds) left of the 2nd lowest and
# right of the 2nd highest person parameter
PImapExtremes <-FALSE
low_pers <- perspars[2]
high_pers <- perspars[length(perspars)-1]
if (length(which(threshs<low_pers))>0 & length(
which(threshs>high_pers)) >0){
PImapExtremes <-TRUE
}
}
if (gap_prop>0){
# calculates the proportions of neighboring person parameters with an
# items/threshold location in between
total_gaps <- length(perspars) -1
count_gaps <- 0
for (i in seq_len(length(perspars))-1){
if (length(intersect(which(threshs>perspars[i]),which(
threshs<perspars[i+1])))>0){count_gaps <- count_gaps+1}
}
prop_gaps <- count_gaps/total_gaps
if (prop_gaps < gap_prop){gap_crit <- FALSE}
}
if (PImapExtremes==TRUE & gap_crit==TRUE){
return(list(items, model, p.par))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.