Nothing
make_data_expert <- function(param_expert, times_expert = NULL){
n.experts <- c()
for(i in 1:length(param_expert)){
n.experts <- c(n.experts, nrow(param_expert[[i]]))
}
data_dist_ind <- num_param <- matrix(-999.2,nrow = max(n.experts), ncol = length(times_expert))
expert.array <- array(-999.2,dim = c(max(n.experts),5,length(times_expert)))
for(i in 1:length(times_expert)){
lk_up_dist <- c("norm", "t", "gamma", "lnorm","beta")
dist_fit <- param_expert[[i]][,1]
if(length(dist_fit) - length(expert.array[,1,i])){
dist_fit <- c(dist_fit, rep(-999.2,length(dist_fit) - length(expert.array[,1,i])))
}
expert.array[,1,i] <- as.numeric(sapply(dist_fit, function(x){which(x==lk_up_dist)}))
weight_vec <- param_expert[[i]][,2]
expert.array[1:length(weight_vec),2,i] <- weight_vec
expert.array[1:nrow(param_expert[[i]][,3:5]),3:5,i] <- as.matrix(param_expert[[i]][,3:5])
}
#Stan does not allow NA
expert.array[is.na(expert.array)] <- -999.2
if(!is.null(times_expert)){
n_time_expert <- length(times_expert)
time_expert <- as.array(times_expert)
}else{
n_time_expert <- 1
time_expert <- numeric(0) #This produces an array of size 0
#https://dev.to/martinmodrak/optional-parametersdata-in-stan-4o33
if (distr3 %in% c("gam", "gga", "gom")){
time_expert <- 1 # Has to be defined for JAGS
}
}
expert.array
}
get_k_norm <- function(opinion_list, St_indic = 1){ # Only required if log-pooling
k_norm <- rep(NA, length(opinion_list))
if(St_indic ==1){
a <- 0
b <- 1
}else{
a <- -Inf
b <- +Inf
}
for(i in 1:length(opinion_list)){
opinion_list[[i]]$dist <- stringr::str_replace_all( opinion_list[[i]]$dist, "normal", "norm")
opinion_list[[i]]$dist <- stringr::str_replace_all( opinion_list[[i]]$dist, "lognorm", "lnorm")
pool.df <- opinion_list[[i]]
if(St_indic ==1){
min_quant <- 0
max_quant <- 1
}else{
quant.vec <- t(apply(pool.df, 1, function(x){get_quant_val(
dist = x["dist"],
param1 = x["param1"],
param2 = x["param2"],
param3 = x["param3"],
probs = c(0.001,0.025,0.5,0.975,0.999))}))
# central.cauchy <- mean(quant.vec[,3])#mean
# sd.cauchy <- max(apply(quant.vec,1, function(x){(x[4]-x[2])/4})) #sd
min_quant <- min(quant.vec)
max_quant <- max(quant.vec)
}
x.eval <- seq(min_quant, max_quant, length.out = 100)
#Find the range of x.eval to integrate over
# x.eval <- seq(0,1, by = 0.001)
dens_eval<- eval_dens_pool(x.eval,opinion_list[[i]], pool_type = "log pool", St_indic =St_indic)
k_norm[i] <- integrate.xy(x = x.eval,fx = dens_eval)
}
k_norm
}
#' Helper function to run the survival models using MLE and flexsurv
#'
#' @param x a string containing the name of the model
#' to be fitted
#' #' @param exArgs a list of extra arguments passed from the main 'fit.models'
#' function
#' @note Something will go here
#' @author Gianluca Baio
#' @seealso fit.models
#' @references Baio (2020). survHE
#' @keywords Parametric survival models Maximum likelihood estimation
#' @noRd
runMLE <- function (x, exArgs){
formula <- exArgs$formula
data = exArgs$data
availables <- load_availables()
d3 <- manipulate_distributions(x)$distr3
x <- manipulate_distributions(x)$distr
expert_opinion_flex <- list()
if (exists("mle_vague", where = exArgs)) {
mle_vague <- exArgs$mle_vague
}else{
mle_vague <- FALSE
}
if (exists("init", where = exArgs)) {
names_init <- names(exArgs$init)
names_d3 <- rep(NA, length(names_init))
names_init_list <- sapply(names_init,FUN = manipulate_distributions)
for(i in 1:length(names_d3)){
names_d3[i] <- names_init_list[,i]$distr3
}
names(exArgs$init) <- names_d3
if(d3%in% names(exArgs$init) ){
init <- exArgs$init[[d3]]
}else{
init <- NULL
}
}else{
init <- NULL
}
if (exArgs$opinion_type != "survival") {
times <- 99999
expert_opinion_flex$St_indic <- 0
}
if (exArgs$opinion_type == "survival") {
expert_opinion_flex$St_indic <- 1
times <- exArgs$times_expert
if (is.null(exArgs$id_St)) {
expert_opinion_flex$id_St <- 1
}
else {
expert_opinion_flex$id_St <- exArgs$id_St
}
}
if (exArgs$opinion_type == "mean") {
if (is.null(exArgs$id_trt | exArgs$id_comp)) {
message("You need to supply the location within the dataframe row number of a treatment and a comparator arm to arguments id_trt and id_comp")
stop()
}
expert_opinion_flex$id_trt <- exArgs$id_trt
expert_opinion_flex$id_comp <- exArgs$id_comp
}
expert_opinion_flex$param_expert <- make_data_expert(exArgs$param_expert,
times)
expert_opinion_flex$times <- times
if (exArgs$pool_type == "linear pool") {
expert_opinion_flex$pool <- 1
}
else {
expert_opinion_flex$pool <- 0
}
if (expert_opinion_flex$pool == 0) {
expert_opinion_flex$k_norm <- get_k_norm(exArgs$param_expert)
}
else {
expert_opinion_flex$k_norm <- NULL
}
if (exists("method_mle", where = exArgs)) {
method_mle <- exArgs$method_mle
}
else {
method_mle <- "BFGS"
}
expert_opinion_param_save <- expert_opinion_flex
tic <- proc.time()
if (x == "survspline") {
if (exists("bhazard", where = exArgs)) {
bhazard <- exArgs$bhazard
}
else {
bhazard <- NULL
}
if (exists("weights", where = exArgs)) {
weights <- exArgs$weights
}
else {
weights <- NULL
}
if (exists("subset", where = exArgs)) {
subset <- exArgs$subset
}
else {
subset <- NULL
}
if (exists("knots", where = exArgs)) {
knots <- exArgs$knots
}
else {
knots <- NULL
}
if (exists("k", where = exArgs)) {
k <- exArgs$k
}
else {
k <- 0
}
if (exists("bknots", where = exArgs)) {
bknots <- exArgs$bknots
}
else {
bknots <- NULL
}
if (exists("scale", where = exArgs)) {
scale <- exArgs$scale
}
else {
scale <- "hazard"
}
if (exists("timescale", where = exArgs)) {
timescale <- exArgs$scale
}
else {
timescale <- "log"
}
suppressWarnings({
model_mle <- flexsurvspline(formula = formula, data = data,
k = k, knots = knots, bknots = bknots, scale = scale,
timescale = timescale, expert_opinion = NULL,
method = method_mle)
if(mle_vague){
model <- model_mle
}else{
model <- flexsurvspline(formula = formula, data = data,
k = k, knots = knots, bknots = bknots, scale = scale,
timescale = timescale, expert_opinion = expert_opinion_flex,
method = method_mle)
}
})
}
else {
suppressWarnings({
model_mle <- flexsurvreg(formula = formula, data = data,
dist = x, expert_opinion = NULL, method = method_mle, inits = init)
if(is.null(init)){
init <- model_mle$res[,1]
}
if(mle_vague){
model <- model_mle
}else{
model <- flexsurvreg(formula = formula, data = data,
dist = x, expert_opinion = expert_opinion_flex,
method = method_mle, inits =init)
}
})
}
toc <- proc.time() - tic
model_name <- d3
list(model = model, aic = model$AIC, bic = -2 * model$loglik +
model$npars * log(model$N), dic = NULL, time2run = toc[3],
model_name = model_name, expert_opinion_param_save = expert_opinion_param_save)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.