Nothing
# FUNCTION ----
`%!in%` = Negate(`%in%`)
#NAMESPACE HACK FOR CRAN; won't let me use SHELF 3 times :
logt_error <- function(parameters, values, probabilities, weights, degreesfreedom){
sum(weights * (pt((log(values) - parameters[1]) / exp(parameters[2]), degreesfreedom) - probabilities)^2)
}
#' @keywords internal
gamma_error <-
function(parameters, values, probabilities, weights){
sum(weights * (pgamma(values, exp(parameters[1]), exp(parameters[2])) -probabilities)^2)
}
lognormal_error <-
function(parameters, values, probabilities, weights){
sum(weights * (plnorm(values, parameters[1], exp(parameters[2])) - probabilities)^2)
}
logt_error <- function(parameters, values, probabilities, weights, degreesfreedom){
sum(weights * (pt((log(values) - parameters[1]) / exp(parameters[2]), degreesfreedom) - probabilities)^2)
}
makeGroupPlot <- function(fit, pl, pu, d = "best", lwd, xlab, ylab, fs = 12,
expertnames = NULL){
expert <- NULL # hack to avoid R CMD check NOTE
n.experts <- nrow(fit$vals)
if(is.null(expertnames)){
if(n.experts < 27){
expertnames <- LETTERS[1:n.experts]
}
if(n.experts > 26){
expertnames <- factor(1:n.experts)
}
}
x <- matrix(0, 200 * n.experts, 1)
fx <- x
for(i in 1:n.experts){
densitydata <- expertdensity(fit, d, ex = i, pl, pu)
x[(1+(i-1)*200):(i*200), 1] <- densitydata$x
fx[(1+(i-1)*200):(i*200), 1] <-densitydata$fx
}
df1 <- data.frame(x = x, fx = fx,
expert = factor(rep(expertnames, each =200),
levels = expertnames))
p1 <- ggplot(df1, aes(x = x, y = fx, colour = expert)) +
labs(x = xlab, y = ylab) +
theme(text = element_text(size = fs))
if(d == "hist"){
p1 <- p1 + geom_step(size=lwd)
}else{
p1 <- p1 + geom_line(size=lwd)
}
p1
}
makeLinearPoolPlot <- function(fit, xl, xu, d = "best", w = 1, lwd, xlab, ylab,
legend_full = TRUE, ql = NULL, qu = NULL,
nx = 200, addquantile = FALSE, fs = 12,
expertnames = NULL,
lpname = "linear pool"){
expert <- ftype <- NULL # hack to avoid R CMD check NOTE
n.experts <- nrow(fit$vals)
if(length(d) == 1){
d <- rep(d, n.experts)
}
if(is.null(expertnames)){
if(n.experts < 27){
expertnames <- LETTERS[1:n.experts]
}
if(n.experts > 26){
expertnames <- 1:n.experts
}
}
nxTotal <- nx + length(c(ql, qu))
x <- matrix(0, nxTotal, n.experts)
fx <- x
if(min(w)<0 | max(w)<=0){stop("expert weights must be non-negative, and at least one weight must be greater than 0.")}
if(length(w)==1){
w <- rep(w, n.experts)
}
weight <- matrix(w/sum(w), nxTotal, n.experts, byrow = T)
for(i in 1:n.experts){
densitydata <- expertdensity(fit, d[i], ex = i, xl, xu, ql, qu, nx)
x[, i] <- densitydata$x
fx[, i] <-densitydata$fx
}
fx.lp <- apply(fx * weight, 1, sum)
df1 <- data.frame(x = rep(x[, 1], n.experts + 1),
fx = c(as.numeric(fx), fx.lp),
expert = factor(c(rep(expertnames,
each = nxTotal),
rep(lpname, nxTotal)),
levels = c(expertnames,
lpname)),
ftype = factor(c(rep("individual",
nxTotal * n.experts),
rep(lpname, nxTotal)),
levels = c("individual",
lpname))
)
df1$expert <- factor(df1$expert,
levels = c(expertnames, lpname))
if(legend_full){
cols <- scales::hue_pal()(n.experts + 1)
linetypes <- c(rep("dashed", n.experts), "solid")
sizes <- lwd * c(rep(0.5, n.experts), 1.5)
names(cols) <- names(linetypes) <-
names(sizes) <- c(expertnames, lpname )
p1 <- ggplot(df1, aes(x = x, y = fx,
colour = expert,
linetype = expert,
size = expert)) +
scale_colour_manual(values = cols,
breaks = c(expertnames, lpname )) +
scale_linetype_manual(values = linetypes,
breaks = c(expertnames, lpname )) +
scale_size_manual(values = sizes,
breaks = c(expertnames, lpname ))}else{
p1 <- ggplot(df1, aes(x = x, y = fx,
colour = ftype,
linetype=ftype, size =ftype)) +
scale_linetype_manual(name = "distribution", values = c("dashed", "solid"))+
scale_size_manual(name = "distribution", values = lwd * c(.5, 1.5)) +
scale_color_manual(name = "distribution", values = c("black", "red"))
}
if(legend_full){
for(i in 1:n.experts){
if(d[i] == "hist"){
p1 <- p1 + geom_step(data = subset(df1, expert == expertnames[i]),
aes(colour = expert))
}else{
p1 <- p1 + geom_line(data = subset(df1, expert == expertnames[i]),
aes(colour = expert))
}
}
}else{
for(i in 1:n.experts){
if(d[i] == "hist"){
p1 <- p1 + geom_step(data = subset(df1, expert == expertnames[i]),
aes(colour = ftype))
}else{
p1 <- p1 + geom_line(data = subset(df1, expert == expertnames[i]),
aes(colour = ftype))
}
}
}
if(length(unique(d)) == 1 & d[1] == "hist"){
p1 <- p1 + geom_step(data = subset(df1, expert == lpname),
aes(colour = expert))
}else{
p1 <- p1 + geom_line(data = subset(df1, expert == lpname),
aes(colour = expert))
}
p1 <- p1 + labs(x = xlab, y = ylab)
if((!is.null(ql)) & (!is.null(qu)) & addquantile){
if(legend_full){
ribbon_col <- scales::hue_pal()(n.experts + 1)[n.experts + 1]}else{
ribbon_col <- "red"
}
p1 <- p1 + geom_ribbon(data = with(df1, subset(df1, x <= ql &expert == lpname)),
aes(ymax = fx, ymin = 0),
alpha = 0.2, show.legend = FALSE, colour = NA, fill =ribbon_col ) +
geom_ribbon(data = with(df1, subset(df1, x >=qu &expert == lpname)),
aes(ymax = fx, ymin = 0),
alpha = 0.2, show.legend = FALSE, colour = NA, fill =ribbon_col )
}
if(lpname == "marginal"){
p1 <- p1 + theme(legend.title = element_blank())
}
p1 + theme(text = element_text(size = fs))
}
normal_error_mod <- function (parameters, values, probabilities, weights, mode,trunc =FALSE){
if(trunc){ #Survival Trunc
Fx <- pnorm(values, parameters[1], exp(parameters[2]))
Fa <- pnorm(0, parameters[1], exp(parameters[2]))
Fb <- pnorm(1, parameters[1], exp(parameters[2]))
F_final <- (Fx - Fa)/(Fb-Fa)
}else{
F_final <- pnorm(values, parameters[1], exp(parameters[2]))
}
res1 <- sum(weights * (F_final - probabilities)^2)
if (!is.null(mode)) {
res1 <- res1 + (parameters[1] - mode)^2
}
return(res1)
}
t_error_mod <- function (parameters, values, probabilities, weights, degreesfreedom,
mode,trunc=FALSE){
if(trunc){ #Survival Trunc
Fx <- stats::pt((values - parameters[1])/exp(parameters[2]),
degreesfreedom)
Fa <- stats::pt((0 - parameters[1])/exp(parameters[2]),
degreesfreedom)
Fb <- stats::pt((1 - parameters[1])/exp(parameters[2]),
degreesfreedom)
F_final <- (Fx - Fa)/(Fb-Fa)
}else{
F_final <- stats::pt((values - parameters[1])/exp(parameters[2]),
degreesfreedom)
}
res1 <- sum(weights * (F_final - probabilities)^2)
if (!is.null(mode)) {
res1 <- res1 + (parameters[1] - mode)^2
}
return(res1)
}
##' @exportS3Method NULL
gamma_error_mod <- function (parameters, values, probabilities, weights, mode,trunc=FALSE){
if(trunc){ #Survival Trunc
Fx <- stats::pgamma(values, exp(parameters[1]),exp(parameters[2]))
Fa <- stats::pgamma(0, exp(parameters[1]),exp(parameters[2]))
Fb <- stats::pgamma(1, exp(parameters[1]),exp(parameters[2]))
F_final <- (Fx - Fa)/(Fb-Fa)
}else{
F_final <- stats::pgamma(values, exp(parameters[1]),exp(parameters[2]))
}
res1 <- sum(weights * (F_final - probabilities)^2)
if (!is.null(mode)) {
res1 <- res1 + ((exp(parameters[1]) - 1)/exp(parameters[2]) -
mode)^2
}
return(res1)
}
lognormal_error_mod <-function (parameters, values, probabilities, weights, mode,trunc =FALSE){
if(trunc){ #Survival Trunc
Fx <- stats::plnorm(values, parameters[1],exp(parameters[2]))
Fa <- stats::plnorm(0, parameters[1],exp(parameters[2]))
Fb <- stats::plnorm(1, parameters[1],exp(parameters[2]))
F_final <- (Fx - Fa)/(Fb-Fa)
}else{
F_final <- stats::plnorm(values, parameters[1],exp(parameters[2]))
}
res1 <- sum(weights * ( F_final- probabilities)^2)
if (!is.null(mode)) {
res1 <- res1 + (exp(parameters[1] - exp(parameters[2])^2) -
mode)^2
}
return(res1)
}
beta_error_mod <- function (parameters, values, probabilities, weights, mode ){
res1 <- sum(weights * (stats::pbeta(values, exp(parameters[1]),
exp(parameters[2])) - probabilities)^2)
if (!is.null(mode)) {
res1 <- res1 + ((exp(parameters[1]) - 1)/(exp(parameters[1]) +
exp(parameters[2]) - 2) - mode)^2
}
return(res1)
}
dt.scaled <- function (x, df, mean = 0, sd = 1, ncp, log = FALSE){
if (!log)
stats::dt((x - mean)/sd, df, ncp = ncp, log = FALSE)/sd
else stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE) -
log(sd)
}
expert_log_dens <- function(x, df, pool_type, k_norm = NULL, St_indic){
if(is.null(dim(df))){ #corced to vector
df <-matrix(df, nrow = 1, ncol = length(df))
}
if(St_indic ==1){
a <- 0
b <- 1
}else{
a <- -Inf
b <- +Inf
}
like <- rep(NA,nrow(df))
for(i in 1:nrow(df)){
if(df[i,1] == 1){ # 1 equal normal
like[i] <- stats::dnorm(x, df[i,3], df[i,4], log = F)
k_trunc <- stats::pnorm(b,df[i,3], df[i,4])-stats::pnorm(a,df[i,3], df[i,4])
}
if(df[i,1] == 2){ # 2 equal t
like[i] <- dt.scaled(x, df[i,5], df[i,3], df[i,4], log = F)
k_trunc <- pt.scaled(b, df[i,5], df[i,3], df[i,4])-pt.scaled(a, df[i,5], df[i,3], df[i,4])
}
if(df[i,1] == 3){ # 3 equal gamma
like[i] <- stats::dgamma(x, df[i,3], df[i,4], log = F)
k_trunc <- stats::pgamma(b, df[i,3], df[i,4])-stats::pgamma(a, df[i,3], df[i,4])
}
if(df[i,1] == 4){ # 4 equal lnorm
like[i] <- stats::dlnorm(x, df[i,3], df[i,4],log = F)
k_trunc <- stats::plnorm(b, df[i,3], df[i,4])-stats::plnorm(a, df[i,3], df[i,4])
}
if(df[i,1] == 5){# 5 = beta
like[i] <- stats::dbeta(x, df[i,3], df[i,4], log = F)
k_trunc <- stats::pbeta(b, df[i,3], df[i,4])-stats::pbeta(a, df[i,3], df[i,4])
}
like[i] <- like[i]/k_trunc
if(pool_type ==1){
like[i] <- like[i]*df[i,2]
}else{
like[i] <- like[i]^df[i,2]
}
}
if(pool_type == 1){
return(log(sum(like)))
}else{
return(log(prod(like)/k_norm))
}
}
#
#
#
# fitdist_mod <- function (vals, probs, lower = -Inf, upper = Inf, weights = 1,
# tdf = 3, expertnames = NULL, excludelog.mirror = TRUE, mode = NULL, trunc = FALSE){
# if (is.matrix(vals) == F) {
# vals <- matrix(vals, nrow = length(vals), ncol = 1)
# }
# if (is.matrix(probs) == F) {
# probs <- matrix(probs, nrow = nrow(vals), ncol = ncol(vals))
# }
# if (is.matrix(weights) == F) {
# weights <- matrix(weights, nrow = nrow(vals), ncol = ncol(vals))
# }
# if (length(lower) == 1) {
# lower <- rep(lower, ncol(vals))
# }
# if (length(upper) == 1) {
# upper <- rep(upper, ncol(vals))
# }
# if (length(tdf) == 1) {
# tdf <- rep(tdf, ncol(vals))
# }
# n.experts <- ncol(vals)
# normal.parameters <- matrix(NA, n.experts, 2)
# t.parameters <- matrix(NA, n.experts, 3)
# mirrorgamma.parameters <- gamma.parameters <- matrix(NA,
# n.experts, 2)
# mirrorlognormal.parameters <- lognormal.parameters <- matrix(NA,
# n.experts, 2)
# mirrorlogt.parameters <- logt.parameters <- matrix(NA, n.experts,
# 3)
# beta.parameters <- matrix(NA, n.experts, 2)
# ssq <- matrix(NA, n.experts, 9)
# colnames(ssq) <- c("normal", "t", "gamma", "lognormal", "logt",
# "beta", "mirrorgamma", "mirrorlognormal", "mirrorlogt")
# if (n.experts > 1 & n.experts < 27 & is.null(expertnames)) {
# expertnames <- paste("expert.", LETTERS[1:n.experts],
# sep = "")
# }
# if (n.experts > 27 & is.null(expertnames)) {
# expertnames <- paste("expert.", 1:n.experts, sep = "")
# }
# for (i in 1:n.experts) {
# # if (min(probs[, i]) > 0.4) {
# # stop("smallest elicited probability must be less than 0.4")
# # }
# if (min(probs[, i]) < 0 | max(probs[, i]) > 1) {
# stop("probabilities must be between 0 and 1")
# }
# # if (max(probs[, i]) < 0.6) {
# # stop("largest elicited probability must be greater than 0.6")
# # }
# if (min(vals[, i]) < lower[i]) {
# stop("elicited parameter values cannot be smaller than lower parameter limit")
# }
# if (max(vals[, i]) > upper[i]) {
# stop("elicited parameter values cannot be greater than upper parameter limit")
# }
# if (tdf[i] <= 0) {
# stop("Student-t degrees of freedom must be greater than 0")
# }
# if (min(probs[-1, i] - probs[-nrow(probs), i]) < 0) {
# stop("probabilities must be specified in ascending order")
# }
# if (min(vals[-1, i] - vals[-nrow(vals), i]) <= 0) {
# stop("parameter values must be specified in ascending order")
# }
# inc <- (probs[, i] > 0) & (probs[, i] < 1)
# minprob <- min(probs[inc, i])
# maxprob <- max(probs[inc, i])
# minvals <- min(vals[inc, i])
# maxvals <- max(vals[inc, i])
#
# q.fit <- stats::approx(x = probs[inc, i], y = vals[inc,
# i], xout = c(0.4, 0.5, 0.6))$y
# l <- q.fit[1]
# u <- q.fit[3]
# minq <- stats::qnorm(minprob)
# maxq <- stats::qnorm(maxprob)
#
# m <- (minvals * maxq - maxvals * minq)/(maxq - minq)
# v <- ((maxvals - minvals)/(maxq - minq))^2
# #browser()
# normal.fit <- stats::optim(c(m, 0.5 * log(v)), normal_error_mod,
# values = vals[inc, i], probabilities = probs[inc,
# i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
# normal.parameters[i, ] <- c(normal.fit$par[1], exp(normal.fit$par[2]))
# ssq[i, "normal"] <- normal.fit$value
#
# lprob <- 0.000001
# if(is.infinite(lower[i])){
# lower[i] <- stats::qnorm(lprob, normal.parameters[i,1],normal.parameters[i,2])
# upper[i] <- stats::qnorm(1-lprob, normal.parameters[i,1],normal.parameters[i,2])
# }
#
#
# t.fit <- stats::optim(c(m, 0.5 * log(v)), t_error_mod,
# values = vals[inc, i], probabilities = probs[inc,
# i], weights = weights[inc, i], degreesfreedom = tdf[i],
# mode = mode[i],trunc = trunc)
# t.parameters[i, 1:2] <- c(t.fit$par[1], exp(t.fit$par[2]))
# t.parameters[i, 3] <- tdf[i]
# ssq[i, "t"] <- t.fit$value
# if (lower[i] == 0) { #Can't use the distribtuions as they are shifted distributions if lower not equal to 0
# vals.scaled1 <- vals[inc, i] - lower[i]
# m.scaled1 <- m - lower[i]
# # browser()
# gamma.fit <- stats::optim(c(log(m.scaled1^2/v), log(m.scaled1/v)),
# gamma_error_mod, values = vals.scaled1, probabilities = probs[inc,
# i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
# gamma.parameters[i, ] <- exp(gamma.fit$par)
# ssq[i, "gamma"] <- gamma.fit$value
# std <- ((log(u - lower[i]) - log(l - lower[i]))/1.35)
# mlog <- (log(minvals - lower[i]) * maxq - log(maxvals -
# lower[i]) * minq)/(maxq - minq)
# lognormal.fit <- stats::optim(c(mlog, log(std)),
# lognormal_error_mod, values = vals.scaled1, probabilities = probs[inc,
# i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
# lognormal.parameters[i, 1:2] <- c(lognormal.fit$par[1],
# exp(lognormal.fit$par[2]))
# ssq[i, "lognormal"] <- lognormal.fit$value
# logt.fit <- stats::optim(c(log(m.scaled1), log(std)),
# logt.error, values = vals.scaled1, probabilities = probs[inc,
# i], weights = weights[inc, i], degreesfreedom = tdf[i])
# logt.parameters[i, 1:2] <- c(logt.fit$par[1], exp(logt.fit$par[2]))
# logt.parameters[i, 3] <- tdf[i]
# ssq[i, "logt"] <- Inf#logt.fit$value
# }
# if ((lower[i] ==0) & (upper[i] < Inf)) {#Can't use the distribtuions as they are shifted distributions if lower not equal to 0
# vals.scaled2 <- (vals[inc, i] - lower[i])/(upper[i] -
# lower[i])
# m.scaled2 <- (m - lower[i])/(upper[i] - lower[i])
# v.scaled2 <- v/(upper[i] - lower[i])^2
# alp <- abs(m.scaled2^3/v.scaled2 * (1/m.scaled2 -
# 1) - m.scaled2)
# bet <- abs(alp/m.scaled2 - alp)
# if (identical(probs[inc, i], (vals[inc, i] - lower[i])/(upper[i] -
# lower[i]))) {
# alp <- bet <- 1
# }
# beta.fit <- stats::optim(c(log(alp), log(bet)), beta_error_mod,
# values = vals.scaled2, probabilities = probs[inc,
# i], weights = weights[inc, i], mode = mode[i], lower = lower[i], upper = upper[i])
# beta.parameters[i, ] <- exp(beta.fit$par)
#
#
# ssq[i, "beta"] <- beta.fit$value
#
# }
# if (upper[i] < Inf) {
# valsMirrored <- upper[i] - vals[inc, i]
# probsMirrored <- 1 - probs[inc, i]
# mMirrored <- upper[i] - m
# mirrorgamma.fit <- stats::optim(c(log(mMirrored^2/v),
# log(mMirrored/v)), gamma.error, values = valsMirrored,
# probabilities = probsMirrored, weights = weights[inc,
# i])
# mirrorgamma.parameters[i, ] <- exp(mirrorgamma.fit$par)
# ssq[i, "mirrorgamma"] <- Inf #mirrorgamma.fit$value
# mlogMirror <- (log(upper[i] - maxvals) * (1 - minq) -
# log(upper[i] - minvals) * (1 - maxq))/(maxq -
# minq)
# stdMirror <- ((log(upper[i] - l) - log(upper[i] -
# u))/1.35)
# mirrorlognormal.fit <- optim(c(mlogMirror, log(stdMirror)),
# lognormal.error, values = valsMirrored, probabilities = probsMirrored,
# weights = weights[inc, i])
# mirrorlognormal.parameters[i, 1:2] <- c(mirrorlognormal.fit$par[1],
# exp(mirrorlognormal.fit$par[2]))
# ssq[i, "mirrorlognormal"] <- mirrorlognormal.fit$value
# mirrorlogt.fit <- stats::optim(c(log(mMirrored),
# log(stdMirror)), logt.error, values = valsMirrored,
# probabilities = probsMirrored, weights = weights[inc,
# i], degreesfreedom = tdf[i])
# mirrorlogt.parameters[i, 1:2] <- c(mirrorlogt.fit$par[1],
# exp(mirrorlogt.fit$par[2]))
# mirrorlogt.parameters[i, 3] <- tdf[i]
# ssq[i, "mirrorlogt"] <- Inf#mirrorlogt.fit$value
# }
# }
#
# limits <- data.frame(lower = lower, upper = upper)
# row.names(limits) <- expertnames
#
# dfn <- data.frame(normal.parameters)
# names(dfn) <- c("mean", "sd")
# row.names(dfn) <- expertnames
# dft <- data.frame(t.parameters)
# names(dft) <- c("location", "scale", "df")
# row.names(dft) <- expertnames
# dfg <- data.frame(gamma.parameters)
# names(dfg) <- c("shape", "rate")
# row.names(dfg) <- expertnames
# dfmirrorg <- data.frame(mirrorgamma.parameters)
# names(dfmirrorg) <- c("shape", "rate")
# row.names(dfmirrorg) <- expertnames
# dfln <- data.frame(lognormal.parameters)
# names(dfln) <- c("mean.log.X", "sd.log.X")
# row.names(dfln) <- expertnames
# dfmirrorln <- data.frame(mirrorlognormal.parameters)
# names(dfmirrorln) <- c("mean.log.X", "sd.log.X")
# row.names(dfmirrorln) <- expertnames
# dflt <- data.frame(logt.parameters)
# names(dflt) <- c("location.log.X", "scale.log.X", "df.log.X")
# row.names(dflt) <- expertnames
# dfmirrorlt <- data.frame(mirrorlogt.parameters)
# names(dfmirrorlt) <- c("location.log.X", "scale.log.X", "df.log.X")
# row.names(dfmirrorlt) <- expertnames
# dfb <- data.frame(beta.parameters)
# names(dfb) <- c("shape1", "shape2")
# row.names(dfb) <- expertnames
# ssq <- data.frame(ssq)
# row.names(ssq) <- expertnames
# if (excludelog.mirror) {
# reducedssq <- ssq[, c("normal", "t", "gamma", "lognormal",
# "beta")]
# index <- apply(reducedssq, 1, which.min)
# best.fitting <- data.frame(best.fit = names(reducedssq)[index])
# }
# else {
# index <- apply(ssq, 1, which.min)
# best.fitting <- data.frame(best.fit = names(ssq)[index])
# }
# row.names(best.fitting) <- expertnames
# vals <- data.frame(vals)
# names(vals) <- expertnames
# probs <- data.frame(probs)
# names(probs) <- expertnames
# fit <- list(Normal = dfn, Student.t = dft, Gamma = dfg, Log.normal = dfln,
# Log.Student.t = dflt, Beta = dfb, mirrorgamma = dfmirrorg,
# mirrorlognormal = dfmirrorln, mirrorlogt = dfmirrorlt,
# ssq = ssq, best.fitting = best.fitting, vals = t(vals),
# probs = t(probs), limits = limits)
# class(fit) <- "elicitation"
# fit
# }
#
fitdist_mod <- function (vals, probs, lower = -Inf, upper = Inf, weights = 1,
tdf = 3, expertnames = NULL, mode = NULL, trunc = FALSE){
if (is.matrix(vals) == F) {
vals <- matrix(vals, nrow = length(vals), ncol = 1)
}
if (is.matrix(probs) == F) {
probs <- matrix(probs, nrow = nrow(vals), ncol = ncol(vals))
}
if (is.matrix(weights) == F) {
weights <- matrix(weights, nrow = nrow(vals), ncol = ncol(vals))
}
if (length(lower) == 1) {
lower <- rep(lower, ncol(vals))
}
if (length(upper) == 1) {
upper <- rep(upper, ncol(vals))
}
if (length(tdf) == 1) {
tdf <- rep(tdf, ncol(vals))
}
n.experts <- ncol(vals)
normal.parameters <- matrix(NA, n.experts, 2)
t.parameters <- matrix(NA, n.experts, 3)
#mirrorgamma.parameters <- gamma.parameters <- matrix(NA,n.experts, 2)
gamma.parameters <- matrix(NA,n.experts, 2)
#mirrorlognormal.parameters <- lognormal.parameters <- matrix(NA,n.experts, 2)
lognormal.parameters <- matrix(NA,n.experts, 2)
#mirrorlogt.parameters <- logt.parameters <- matrix(NA, n.experts,3)
beta.parameters <- matrix(NA, n.experts, 2)
ssq <- matrix(NA, n.experts, 5)
colnames(ssq) <- c("normal", "t", "gamma", "lognormal", "beta" )
if (n.experts > 1 & n.experts < 27 & is.null(expertnames)) {
expertnames <- paste("expert.", LETTERS[1:n.experts],
sep = "")
}
if (n.experts > 27 & is.null(expertnames)) {
expertnames <- paste("expert.", 1:n.experts, sep = "")
}
for (i in 1:n.experts) {
# if (min(probs[, i]) > 0.4) {
# stop("smallest elicited probability must be less than 0.4")
# }
if (min(probs[, i]) < 0 | max(probs[, i]) > 1) {
stop("probabilities must be between 0 and 1")
}
# if (max(probs[, i]) < 0.6) {
# stop("largest elicited probability must be greater than 0.6")
# }
# if (min(vals[, i]) < lower[i]) {
# stop("elicited parameter values cannot be smaller than lower parameter limit")
# }
# if (max(vals[, i]) > upper[i]) {
# stop("elicited parameter values cannot be greater than upper parameter limit")
# }
if (tdf[i] <= 0) {
stop("Student-t degrees of freedom must be greater than 0")
}
if (min(probs[-1, i] - probs[-nrow(probs), i]) < 0) {
stop("probabilities must be specified in ascending order")
}
if (min(vals[-1, i] - vals[-nrow(vals), i]) <= 0) {
stop("parameter values must be specified in ascending order")
}
inc <- (probs[, i] > 0) & (probs[, i] < 1)
minprob <- min(probs[inc, i])
maxprob <- max(probs[inc, i])
minvals <- min(vals[inc, i])
maxvals <- max(vals[inc, i])
q.fit <- stats::approx(x = probs[inc, i], y = vals[inc,i], xout = c(0.4, 0.5, 0.6))$y
l <- q.fit[1]
u <- q.fit[3]
minq <- stats::qnorm(minprob)
maxq <- stats::qnorm(maxprob)
m <- (minvals * maxq - maxvals * minq)/(maxq - minq)
v <- ((maxvals - minvals)/(maxq - minq))^2
normal.fit <- stats::optim(c(m, 0.5 * log(v)), normal_error_mod,
values = vals[inc, i], probabilities = probs[inc,i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
normal.parameters[i, ] <- c(normal.fit$par[1], exp(normal.fit$par[2]))
ssq[i, "normal"] <- normal.fit$value
lprob <- 0.000001
if(is.infinite(lower[i])){
lower[i] <- stats::qnorm(lprob, normal.parameters[i,1],normal.parameters[i,2])
upper[i] <- stats::qnorm(1-lprob, normal.parameters[i,1],normal.parameters[i,2])
}
t.fit <- stats::optim(c(m, 0.5 * log(v)), t_error_mod,
values = vals[inc, i], probabilities = probs[inc,
i], weights = weights[inc, i], degreesfreedom = tdf[i],
mode = mode[i],trunc = trunc)
t.parameters[i, 1:2] <- c(t.fit$par[1], exp(t.fit$par[2]))
t.parameters[i, 3] <- tdf[i]
ssq[i, "t"] <- t.fit$value
if (lower[i] == 0) { #Can't use the distribtuions as they are shifted distributions if lower not equal to 0
vals.scaled1 <- vals[inc, i] - lower[i]
m.scaled1 <- m - lower[i]
# browser()
gamma.fit <- stats::optim(c(log(m.scaled1^2/v), log(m.scaled1/v)),
gamma_error_mod, values = vals.scaled1, probabilities = probs[inc,
i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
gamma.parameters[i, ] <- exp(gamma.fit$par)
ssq[i, "gamma"] <- gamma.fit$value
std <- ((log(u - lower[i]) - log(l - lower[i]))/1.35)
mlog <- (log(minvals - lower[i]) * maxq - log(maxvals -
lower[i]) * minq)/(maxq - minq)
lognormal.fit <- stats::optim(c(mlog, log(std)),
lognormal_error_mod, values = vals.scaled1, probabilities = probs[inc,
i], weights = weights[inc, i], mode = mode[i],trunc = trunc)
lognormal.parameters[i, 1:2] <- c(lognormal.fit$par[1],
exp(lognormal.fit$par[2]))
ssq[i, "lognormal"] <- lognormal.fit$value
# logt.fit <- stats::optim(c(log(m.scaled1), log(std)),
# logt.error, values = vals.scaled1, probabilities = probs[inc,
# i], weights = weights[inc, i], degreesfreedom = tdf[i])
# logt.parameters[i, 1:2] <- c(logt.fit$par[1], exp(logt.fit$par[2]))
# logt.parameters[i, 3] <- tdf[i]
# ssq[i, "logt"] <- Inf#logt.fit$value
}
if ((lower[i] ==0) & (upper[i] < Inf)) {#Can't use the distribtuions as they are shifted distributions if lower not equal to 0
vals.scaled2 <- (vals[inc, i] - lower[i])/(upper[i] -
lower[i])
m.scaled2 <- (m - lower[i])/(upper[i] - lower[i])
v.scaled2 <- v/(upper[i] - lower[i])^2
alp <- abs(m.scaled2^3/v.scaled2 * (1/m.scaled2 -
1) - m.scaled2)
bet <- abs(alp/m.scaled2 - alp)
if (identical(probs[inc, i], (vals[inc, i] - lower[i])/(upper[i] -
lower[i]))) {
alp <- bet <- 1
}
beta.fit <- stats::optim(c(log(alp), log(bet)), beta_error_mod,
values = vals.scaled2, probabilities = probs[inc,
i], weights = weights[inc, i], mode = mode[i], lower = lower[i], upper = upper[i])
beta.parameters[i, ] <- exp(beta.fit$par)
ssq[i, "beta"] <- beta.fit$value
}
# if (upper[i] < Inf) {
# valsMirrored <- upper[i] - vals[inc, i]
# probsMirrored <- 1 - probs[inc, i]
# mMirrored <- upper[i] - m
# mirrorgamma.fit <- stats::optim(c(log(mMirrored^2/v),
# log(mMirrored/v)), gamma.error, values = valsMirrored,
# probabilities = probsMirrored, weights = weights[inc,
# i])
# mirrorgamma.parameters[i, ] <- exp(mirrorgamma.fit$par)
# ssq[i, "mirrorgamma"] <- Inf #mirrorgamma.fit$value
# mlogMirror <- (log(upper[i] - maxvals) * (1 - minq) -
# log(upper[i] - minvals) * (1 - maxq))/(maxq -
# minq)
# stdMirror <- ((log(upper[i] - l) - log(upper[i] -
# u))/1.35)
# mirrorlognormal.fit <- optim(c(mlogMirror, log(stdMirror)),
# lognormal.error, values = valsMirrored, probabilities = probsMirrored,
# weights = weights[inc, i])
# mirrorlognormal.parameters[i, 1:2] <- c(mirrorlognormal.fit$par[1],
# exp(mirrorlognormal.fit$par[2]))
# ssq[i, "mirrorlognormal"] <- mirrorlognormal.fit$value
# mirrorlogt.fit <- stats::optim(c(log(mMirrored),
# log(stdMirror)), logt.error, values = valsMirrored,
# probabilities = probsMirrored, weights = weights[inc,
# i], degreesfreedom = tdf[i])
# mirrorlogt.parameters[i, 1:2] <- c(mirrorlogt.fit$par[1],
# exp(mirrorlogt.fit$par[2]))
# mirrorlogt.parameters[i, 3] <- tdf[i]
# ssq[i, "mirrorlogt"] <- Inf#mirrorlogt.fit$value
# }
}
limits <- data.frame(lower = lower, upper = upper)
row.names(limits) <- expertnames
dfn <- data.frame(normal.parameters)
names(dfn) <- c("mean", "sd")
row.names(dfn) <- expertnames
dft <- data.frame(t.parameters)
names(dft) <- c("location", "scale", "df")
row.names(dft) <- expertnames
dfg <- data.frame(gamma.parameters)
names(dfg) <- c("shape", "rate")
row.names(dfg) <- expertnames
# dfmirrorg <- data.frame(mirrorgamma.parameters)
# names(dfmirrorg) <- c("shape", "rate")
# row.names(dfmirrorg) <- expertnames
dfln <- data.frame(lognormal.parameters)
names(dfln) <- c("mean.log.X", "sd.log.X")
row.names(dfln) <- expertnames
# dfmirrorln <- data.frame(mirrorlognormal.parameters)
# names(dfmirrorln) <- c("mean.log.X", "sd.log.X")
# row.names(dfmirrorln) <- expertnames
# dflt <- data.frame(logt.parameters)
# names(dflt) <- c("location.log.X", "scale.log.X", "df.log.X")
# row.names(dflt) <- expertnames
# dfmirrorlt <- data.frame(mirrorlogt.parameters)
# names(dfmirrorlt) <- c("location.log.X", "scale.log.X", "df.log.X")
# row.names(dfmirrorlt) <- expertnames
dfb <- data.frame(beta.parameters)
names(dfb) <- c("shape1", "shape2")
row.names(dfb) <- expertnames
ssq <- data.frame(ssq)
row.names(ssq) <- expertnames
# if (excludelog.mirror) {
# reducedssq <- ssq[, c("normal", "t", "gamma", "lognormal","beta")]
# index <- apply(reducedssq, 1, which.min)
# best.fitting <- data.frame(best.fit = names(reducedssq)[index])
# }
# else {
index <- apply(ssq, 1, which.min)
best.fitting <- data.frame(best.fit = names(ssq)[index])
# }
row.names(best.fitting) <- expertnames
vals <- data.frame(vals)
names(vals) <- expertnames
probs <- data.frame(probs)
names(probs) <- expertnames
fit <- list(Normal = dfn,
Student.t = dft,
Gamma = dfg,
Log.normal = dfln,
#Log.Student.t = dflt,
Beta = dfb,
# mirrorgamma = dfmirrorg,
# mirrorlognormal = dfmirrorln,
# mirrorlogt = dfmirrorlt,
ssq = ssq,
best.fitting = best.fitting,
vals = t(vals),
probs = t(probs),
limits = limits)
class(fit) <- "elicitation"
fit
}
plotfit <- function (fit, d = "best", xl = -Inf, xu = Inf, ql = NA, qu = NA,
lp = FALSE, ex = NA, sf = 3, ind = TRUE, lpw = 1, fs = 12,
lwd = 1, xlab = "x", ylab = expression(f[X](x)), legend_full = TRUE,
percentages = FALSE, returnPlot = FALSE){
if (d == "beta" & (min(fit$limits) == -Inf | max(fit$limits) ==
Inf)) {
stop("Parameter limits must be finite to fit a beta distribution")
}
if (d == "gamma" & min(fit$limits) == -Inf) {
stop("Lower parameter limit must be finite to fit a (shifted) gamma distribution")
}
if (d == "lognormal" & min(fit$limits) == -Inf) {
stop("Lower parameter limit must be finite to fit a (shifted) log normal distribution")
}
# if (d == "logt" & min(fit$limits) == -Inf) {
# stop("Lower parameter limit must be finite to fit a (shifted) log t distribution")
# }
if (is.na(ql) == F & (ql < 0 | ql > 1)) {
stop("Lower feedback quantile must be between 0 and 1")
}
if (is.na(qu) == F & (qu < 0 | qu > 1)) {
stop("Upper feedback quantile must be between 0 and 1")
}
ggplot2::theme_set(ggplot2::theme_grey(base_size = fs))
ggplot2::theme_update(plot.title = ggplot2::element_text(hjust = 0.5))
if (nrow(fit$vals) > 1 & is.na(ex) == T & lp == F) {
if (xl == -Inf & min(fit$limits[, 1]) > -Inf) {
xl <- min(fit$limits[, 1])
}
if (xu == Inf & max(fit$limits[, 2]) < Inf) {
xu <- max(fit$limits[, 2])
}
p1 <- suppressWarnings(makeGroupPlot(fit, xl, xu, d,
lwd, xlab, ylab, expertnames = rownames(fit$Normal)))
if (returnPlot) {
return(p1)
}
}
if (nrow(fit$vals) > 1 & lp == T) {
if (xl == -Inf & min(fit$limits[, 1]) > -Inf) {
xl <- min(fit$limits[, 1])
}
if (xl == -Inf & min(fit$limits[, 1]) == -Inf) {
f1 <- SHELF::feedback(fit, quantiles = 0.01, dist = d)
xl <- min(f1$expert.quantiles)
}
if (xu == Inf & max(fit$limits[, 2]) < Inf) {
xu <- max(fit$limits[, 2])
}
if (xu == Inf & max(fit$limits[, 2]) == Inf) {
f2 <- SHELF::feedback(fit, quantiles = 0.99, dist = d)
xu <- max(f2$expert.quantiles)
}
p1 <- makeLinearPoolPlot(fit, xl, xu, d, lpw, lwd, xlab,
ylab, legend_full, expertnames = rownames(fit$Normal))
if (returnPlot) {
return(p1)
}
}
if (nrow(fit$vals) > 1 & is.na(ex) == F) {
if (xl == -Inf & fit$limits[ex, 1] > -Inf) {
xl <- fit$limits[ex, 1]
}
if (xu == Inf & fit$limits[ex, 2] < Inf) {
xu <- fit$limits[ex, 2]
}
p1 <- suppressWarnings(makeSingleExpertPlot(fit, d,
xl, xu, ql, qu, sf, ex = ex, lwd, xlab, ylab, percentages))
if (returnPlot) {
return(p1)
}
}
if (nrow(fit$vals) == 1) {
p1 <- suppressWarnings(makeSingleExpertPlot(fit, d,
xl, xu, ql, qu, sf, ex = 1, lwd, xlab, ylab, percentages))
if (returnPlot) {
return(p1)
}
}
}
dt.scaled <- function (x, df, mean = 0, sd = 1, ncp, log = FALSE){
if (!log)
stats::dt((x - mean)/sd, df, ncp = ncp, log = FALSE)/sd
else stats::dt((x - mean)/sd, df, ncp = ncp, log = TRUE) -
log(sd)
}
qt.scaled <- function (p, df, mean = 0, sd = 1, ncp, lower.tail = TRUE, log.p = FALSE){
mean + sd * stats::qt(p, df, ncp = ncp, log.p = log.p)
}
rt.scaled <- function (n, df, mean = 0, sd = 1, ncp) {
mean + sd * stats::rt(n, df, ncp = ncp)
}
eval_dens_pool <- function(x.eval, pool.df, pool_type, St_indic){
#Ensure weights sum to 1
pool.df$wi <- pool.df$wi/sum(pool.df$wi)
dens.vec <- apply(pool.df, 1, function(x){get_density(
dist = x["dist"],
param1 = x["param1"],
param2 = x["param2"],
param3 = x["param3"],
x = x.eval, St_indic =St_indic)})
if(pool_type == "log pool"){
if(is.matrix(dens.vec)){
return(apply(dens.vec, 1, function(x){prod(x^pool.df$wi)}))
}else{
#scaled by an arbitary constant which we don't need to know for candidate density evaluation
return(prod(dens.vec^pool.df$wi))
}
}else{
if(is.matrix(dens.vec)){
return(apply(dens.vec, 1, function(x){sum(x*pool.df$wi)}))
}else{
return(sum(dens.vec*pool.df$wi))
}
}
}
ssq_mix <- function(object, values, probs){
df_ssq <- data.frame(pi = object$pi, mu = object$mu, sd = object$sd)
#Evaluate the pnorm individually
pnorm_eval <- apply(df_ssq,1, FUN = function(x){stats::pnorm(values,x["mu"],
x["sd"])})
pnorm_eval_weighted <- t(pnorm_eval)*df_ssq$pi
#Sum the pnorm then subtract
return(sum((colSums(pnorm_eval_weighted) - probs)^2))
}
expert_dens <- function(expert_df, probs = seq(0.01, 0.98, by = 0.002)){
if(length(unique(expert_df$expert)) !=1){ #Only one expert, Don't need to anything
if(is.null(expert_df$weights) && is.null(expert_df$wi)){
warning("No weights given.. assuming equally weighted expert opinion")
expert_df$weights <- 1
}
if(!is.null(expert_df$wi)){
expert_df$weights <- expert_df$wi
}
expert_df_sum <- expert_df %>% dplyr::group_by(times_expert) %>% dplyr::arrange(times_expert) %>%
dplyr::summarize(sum_weights = sum(weights))
if(any(expert_df_sum$sum_weights != 1)&& any(expert_df$weights != 1)){
warning("Some weights don't sum to 1.. reweighting")
}
expert_df <-expert_df %>% dplyr::left_join(expert_df_sum,"times_expert") %>%
dplyr::mutate(weights = weights/sum_weights)
}
expert_density <- apply(expert_df, 1, function(x){get_quant_val(
dist = x["dist"],
param1 = x["param1"],
param2 = x["param2"],
param3 = x["param3"],
probs = probs)})
rownames(expert_density) <- probs
list(expert_df = expert_df %>% dplyr::select(-sum_weights),
expert_density = expert_density)
}
expertdensity <- function(fit, d = "best", ex = 1, pl, pu, ql = NULL, qu = NULL, nx = 200){
if(pl == -Inf){pl <- qnorm(0.001, fit$Normal[ex,1], fit$Normal[ex,2])}
if(pu == Inf){pu <- qnorm(0.999, fit$Normal[ex,1], fit$Normal[ex,2])}
x <- unique(sort(c(seq(from = pl, to = pu, length = nx), ql, qu)))
if(d == "best"){
d <- fit$best.fitting[ex, 1]
}
if(d == "normal"){
fx <- dnorm(x, fit$Normal[ex,1], fit$Normal[ex,2])
}
if(d == "t"){
fx <- dt((x - fit$Student.t[ex,1])/fit$Student.t[ex,2], fit$Student.t[ex,3])/fit$Student.t[ex,2]
}
if(d == "skewnormal"){
fx <- sn::dsn(x, fit$Skewnormal[ex, 1],
fit$Skewnormal[ex, 2],
fit$Skewnormal[ex, 3])
}
if(d == "gamma"){
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
fx <- dgamma(x - xl, fit$Gamma[ex,1], fit$Gamma[ex,2])
}
if(d == "mirrorgamma"){
xu <- fit$limits[ex, 2]
fx <- dgamma(xu - x, fit$mirrorgamma[ex,1], fit$mirrorgamma[ex,2])
}
if(d == "lognormal"){
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
fx <- dlnorm(x - xl, fit$Log.normal[ex,1], fit$Log.normal[ex,2])
}
if(d == "mirrorlognormal"){
xu <- fit$limits[ex, 2]
fx <- dlnorm(xu - x, fit$mirrorlognormal[ex,1], fit$mirrorlognormal[ex,2])
}
if(d == "logt"){
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
fx <- dt( (log(abs(x - xl)) - fit$Log.Student.t[ex,1]) / fit$Log.Student.t[ex,2], fit$Log.Student.t[ex,3]) / ((x - xl) * fit$Log.Student.t[ex,2])
fx[x<= xl] <- 0 # Hack to avoid NaN
}
if(d == "mirrorlogt"){
xu <- fit$limits[ex,2]
fx <- dt( (log(abs(xu - x)) - fit$mirrorlogt[ex,1]) /
fit$mirrorlogt[ex,2], fit$mirrorlogt[ex,3]) / ((xu - x) * fit$mirrorlogt[ex,2])
fx[x>= xu] <- 0 # Hack to avoid NaN
}
if(d == "beta"){
xl <- fit$limits[ex,1]
xu <- fit$limits[ex,2]
if(xl == -Inf){xl <- 0}
if(xu == Inf){xu <- 1}
fx <- 1/(xu - xl) * dbeta( (x - xl) / (xu - xl), fit$Beta[ex,1], fit$Beta[ex,2])
}
if(d == "hist"){
fx <- dhist(x, c(fit$limits[ex, 1],
fit$vals[ex,],
fit$limits[ex, 2]),
c(0, fit$probs[ex, ],1))
fx[length(fx)] <- 0
}
list(x = x, fx = fx)
}
dhist<-function(x, z, pz){
fx<-rep(0,length(x))
h <- rep(0, length(z) -1)
for(i in 1:length(h)){
h[i]<-(pz[i+1] - pz[i]) / (z[i+1]-z[i])
}
nz<-length(z)
for(i in 1:length(x)){
index<- (x[i]<=z[2:nz]) & (x[i]>z[1:(nz-1)])
if(sum(index)>0){
fx[i] <- h[index]
}
}
fx
}
#Will modify for the SHINY APP
# expert_pooling <- function(expert_quant_list = NULL,
# lower_bound = -Inf, upper_bound = Inf, St_indic = 0){
#
# dfs_expert <- list()
# plts_pool <- list()
# dfs_pool <- list()
#
#
# #if(!is.null(expert_quant_list)){ # If a list of quantiles and probabilities
#
# if(is.null(expert_quant_list$weights_mat)){
# weights_mat <- NULL
# }
# suppressMessages(attach(expert_quant_list))
#
#
# max.timepoints <- length(times)
#
# for(i in 1:max.timepoints){
#
# timepoint <- paste0("Time ",times[i])
#
# fit.eval <- SHELF::fitdist(vals = na.omit(v_array[,,i]),
# probs = na.omit(p_mat[,i]), lower = lower_bound, upper = upper_bound)
#
# weights <- na.omit(weights_mat[,i])
#
# if(is.null(weights_mat) && ncol(stats::na.omit(v_array[,,i])) == 1){
# weights <- 1 #Only one expert so weights should be 1
# }else if(is.null(weights_mat)){
# warning("No weights assigned assuming equal weights")
# weights <- 1
# }
#
# best_fit_index <- apply(fit.eval$ssq[,c("normal","t","gamma", "lognormal", "beta")], 1, which.min)
# best_fit <- names(fit.eval$ssq[,c("normal","t","gamma", "lognormal", "beta")])[best_fit_index]
#
# best_fit_loc <- sapply(best_fit, function(x){which(x == names(fit.eval$ssq))})
# fit.eval.dist <- fit.eval[best_fit_loc]
#
# pool.df_output <- matrix(nrow = length(best_fit_loc),ncol = 3)
# colnames(pool.df_output) <- c("param1", "param2", "param3")
#
# for(i in 1:length(best_fit_loc)){
# pool.df_output[i,1:length(fit.eval.dist[[i]][i,])] <- as.numeric(as.vector(fit.eval.dist[[i]][i,]))
# }
# dfs_expert[[timepoint]] <- data.frame(dist = best_fit, wi = weights, pool.df_output)
#
# plts_pool[[timepoint]] <- makePoolPlot(fit = fit.eval,
# xl =lower_bound,
# xu =upper_bound,
# d = "best",
# w = weights,
# lwd =1,
# xlab = "x",
# ylab =expression(f[X](x)),
# legend_full = TRUE,
# ql = NULL,
# qu = NULL,
# nx = 200,
# addquantile = FALSE,
# fs = 12,
# expertnames = NULL,
# St_indic =St_indic
# )
#
# dfs_pool[[timepoint]] <- plts_pool[[timepoint]][["data"]]
#
# }
#
# # }else{ #This isn't really needed will remove
# #
# # times <- unique(expert_density$expert_df[,"times_expert"])
# # probs <- as.numeric(rownames(expert_density$expert_density))
# #
# # for(i in 1:length(times)){
# #
# # timepoint <- paste0("Time ",times[i])
# #
# # index.loc <- which(expert_density$expert_df$times_expert == times[i])
# # temp_df <- expert_density$expert_df[index.loc, ]
# # temp_dens <- expert_density$expert_density[,index.loc]
# #
# # v <- temp_dens
# # p <- matrix(rep(probs, ncol(temp_dens)), nrow = length(probs), ncol = ncol(temp_dens))
# #
# # # Need to consider upper and lower bounds
# # fit.eval <- SHELF::fitdist(v, p, lower= lower_bound, upper = upper_bound)
# #
# # if(!is.null(temp_df$weights)){
# # weights <- temp_df$weights
# # }else{
# # weights <- 1
# # }
# #
# #
# # best_fit_index <- apply(fit.eval$ssq[,c("normal","t","gamma", "lognormal", "beta")], 1, which.min)
# # best_fit <- names(fit.eval$ssq[,c("normal","t","gamma", "lognormal", "beta")])[best_fit_index]
# #
# # best_fit_loc <- sapply(best_fit, function(x){which(x == names(fit.eval$ssq))})
# # fit.eval.dist <- fit.eval[best_fit_loc]
# #
# # pool.df_output <- matrix(nrow = length(best_fit_loc),ncol = 3)
# # colnames(pool.df_output) <- c("param1", "param2", "param3")
# #
# # for(i in 1:length(best_fit_loc)){
# # pool.df_output[i,1:length(fit.eval.dist[[i]][i,])] <- as.numeric(as.vector(fit.eval.dist[[i]][i,]))
# # }
# # dfs_expert[[timepoint]] <- data.frame(dist = best_fit, wi = weights, pool.df_output)
# #
# #
# # plts_pool[[timepoint]] <- makePoolPlot(fit = fit.eval,
# # xl =lower_bound,
# # xu =upper_bound,
# # d = "best",
# # w = weights,
# # lwd =1,
# # xlab = "x",
# # ylab =expression(f[X](x)),
# # legend_full = TRUE,
# # ql = NULL,
# # qu = NULL,
# # nx = 200,
# # addquantile = FALSE,
# # fs = 12,
# # expertnames = NULL,St_indic = St_indic)
# #
# # dfs_pool[[timepoint]] <- plts_pool[[timepoint]][["data"]]
# #
# #
# # }
# #
# # }
# list(dfs_expert =dfs_expert,
# plts_pool =plts_pool,
# dfs_pool = dfs_pool)
#
# }
#myfit <- fitdist(expert_density, probs)
#plotfit(myfit,lp = T)
# Reweights the weights if they don't sum to 1 anyway
get_quant_val <- function(dist,param1, param2, param3 = NULL, probs = seq(0.01, 0.98, by = 0.01)){
if(dist == "t"){
probs_eval <- as.numeric(param1) + as.numeric(param2)*stats::qt(as.numeric(probs),as.numeric(param3))
return(probs_eval)
}else{
probs <- paste0(probs, collapse = ",")
probs_eval <- paste0("q",dist,
"(c(",probs,"),", param1,
",",param2,")")
probs_eval <- eval(parse(text = probs_eval))
return(probs_eval)
}
}
pt.scaled <-function (q, df, mean = 0, sd = 1, ncp, lower.tail = TRUE, log.p = FALSE){
stats::pt((q - mean)/sd, df, ncp = ncp, log.p = log.p)
}
get_cdf_val <- function(dist,param1, param2, param3 = NULL, vals = seq(0.01, 0.98, by = 0.01)){
if(dist == "t"){
probs_eval <- stats::pt((vals - as.numeric(param1))/as.numeric(param2), as.numeric(param3), log.p = F)
return(probs_eval)
}else{
vals <- paste0(vals, collapse = ",")
probs_eval <- paste0("p",dist,
"(c(",vals,"),", param1,
",",param2,")")
probs_eval <- eval(parse(text = probs_eval))
return(probs_eval)
}
}
get_density <- function(dist, param1, param2, param3 = NULL, x = seq(0.01, 0.98, by = 0.01), St_indic){
x <- paste0(x, collapse = ",")
if(St_indic ==1){
a <- 0
b <- 1
}else{
a <- -Inf
b <- +Inf
}
if(dist == "t"){
#From SHELF reference Student.t Parameters of the fitted t distributions.
#Note that (X - location) / scale has a standard t distribution
dens_x <- paste0("d",dist,
"((c(",x,")-",param1,")/",param2,",", param3,")/",param2)
cdf_a_b <-paste0("p",dist,
"((c(",a,",",b,")-",param1,")/",param2,",", param3,")")
}else{ #
dens_x <- paste0("d",dist,
"(c(",x,"),", param1,
",",param2,")")
cdf_a_b <- paste0("p",dist,
"(c(",a,",",b,"),", param1,
",",param2,")")
}
k_trunc <- diff(eval(parse(text = cdf_a_b)))
dens_eval <- eval(parse(text = dens_x))/k_trunc
return(dens_eval)
}
#' Credible interval for pooled distribution
#'
#' Returns the interval based on defined quantiles.
#' The approach used only provides an approximate (although quite accurate) integral.
#' @param plt_obj A plot object from `plot_expert_opinion`.
#' @param val The name of the opinion for which the interval will be generated.
#' @param interval A vector of the upper and lower probabilities. Default is the standard 95% interval
#' @keywords Expert
#' @return Credible interval based on the pooled distribution
#' @export
#' @examples
#' param_expert_example1 <- list()
#' param_expert_example1[[1]] <- data.frame(dist = c("norm","t"),
#' wi = c(0.5,0.5), # Ensure Weights sum to 1
#' param1 = c(0.1,0.12),
#' param2 = c(0.005,0.005),
#' param3 = c(NA,3))
#' \donttest{
#' plot_opinion1<- plot_expert_opinion(param_expert_example1[[1]],
#' weights = param_expert_example1[[1]]$wi)
#' cred_int(plot_opinion1,val = "linear pool", interval = c(0.025, 0.975))
#' }
#'
cred_int <- function(plt_obj, val = "linear pool",interval = c(0.025, 0.975)){
plt_df <- plt_obj$data %>% dplyr::filter(expert == val) %>% data.frame()
total_integral <- integrate.xy(plt_df$x, plt_df$fx)
partial_integral <- rep(NA, nrow(plt_df))
partial_integral[1] <- 0
for(i in 2:nrow(plt_df)){
partial_integral[i] <- integrate.xy(plt_df$x[1:i], plt_df$fx[1:i])/total_integral
}
plt_df$cdf <- partial_integral
limits <- c(plt_df$x[which.min(abs(plt_df$cdf - interval[1]))],plt_df$x[which.min(abs(plt_df$cdf - interval[2]))])
names(limits) <- c("lower", "upper")
return(limits)
}
#' makePoolPlot
#'
#' @param fit
#' @param xl
#' @param xu
#' @param d
#' @param w
#' @param lwd
#' @param xlab
#' @param ylab
#' @param legend_full
#' @param ql
#' @param qu
#' @param nx
#' @param addquantile
#' @param fs
#' @param expertnames
#' @param St_indic
#'
#' @import ggplot2
#' @importFrom scales hue_pal
#' @importFrom sn dsn qsn
#' @noRd
#'
makePoolPlot <- function (fit, xl, xu, d = "best", w = 1, lwd = 1, xlab = "x",
ylab = expression(f[X](x)), legend_full = TRUE, ql = NULL,
qu = NULL, nx = 500, addquantile = FALSE, fs = 12, expertnames = NULL,
St_indic){
logt_error <- utils::getFromNamespace("logt.error", "SHELF")
gamma_error <- utils::getFromNamespace("gamma.error", "SHELF")
lognormal_error <- utils::getFromNamespace("lognormal.error",
"SHELF")
logt_error <- utils::getFromNamespace("logt.error", "SHELF")
makeGroupPlot <- utils::getFromNamespace("makeGroupPlot",
"SHELF")
makeLinearPoolPlot <- utils::getFromNamespace("makeLinearPoolPlot",
"SHELF")
makeSingleExpertPlot <- utils::getFromNamespace("makeSingleExpertPlot",
"SHELF")
lpname <- c("linear pool", "log pool")
expert <- ftype <- NULL
n.experts <- nrow(fit$vals)
if (length(d) == 1) {
d <- rep(d, n.experts)
}
if (is.null(expertnames)) {
if (n.experts < 27) {
expertnames <- LETTERS[1:n.experts]
}
if (n.experts > 26) {
expertnames <- 1:n.experts
}
}
nxTotal <- nx + length(c(ql, qu))
x <- matrix(0, nxTotal, n.experts)
fx <- x
if (min(w) < 0 | max(w) <= 0) {
stop("expert weights must be non-negative, and at least one weight must be greater than 0.")
}
if (length(w) == 1) {
w <- rep(w, n.experts)
}
weight <- matrix(w/sum(w), nxTotal, n.experts, byrow = T)
sd.norm <- rep(NA, n.experts)
for (i in 1:n.experts) {
}
if (is.infinite(xl) || is.infinite(xu)) {
if (St_indic == 1) {
xl <- 0
xu <- 1
}
else {
min.mean.index <- which.min(fit$Normal$mean)
min.sd.index <- which.min(fit$Normal$sd)
max.mean.index <- which.max(fit$Normal$mean)
max.sd.index <- which.max(fit$Normal$sd)
xl <- qnorm(0.001, fit$Normal[min.mean.index, 1],
fit$Normal[min.sd.index, 2])
xu <- qnorm(0.999, fit$Normal[max.mean.index, 1],
fit$Normal[max.sd.index, 2])
}
}
for (i in 1:n.experts) {
densitydata <- expertdensity(fit, d[i], ex = i, xl,
xu, ql, qu, nx)
x[, i] <- densitydata$x
if (St_indic == 1) {
k_trunc <- integrate.xy(x = x[, 1], fx = densitydata$fx)
}
else {
k_trunc <- 1
}
fx[, i] <- densitydata$fx/k_trunc
}
fx.lp <- apply(fx * weight, 1, sum)
if (any(is.infinite(fx^weight))) {
warning("Print Non finite density for log pooling - Results invalid")
}
fx.logp <- apply(fx^weight, 1, prod)
k_norm <- integrate.xy(x = x[, 1], fx = fx.logp)
fx.logp <- fx.logp/k_norm
df1 <- data.frame(x = rep(x[, 1], n.experts + 2), fx = c(as.numeric(fx),
fx.lp, fx.logp), expert = factor(c(rep(expertnames,
each = nxTotal), rep("linear pool", nxTotal), rep("log pool",
nxTotal)), levels = c(expertnames, "linear pool", "log pool")),
ftype = factor(c(rep("individual", nxTotal * n.experts),
rep("linear pool", nxTotal), rep("log pool", nxTotal)),
levels = c("individual", "linear pool", "log pool")))
df1$expert <- factor(df1$expert, levels = c(expertnames,
"linear pool", "log pool"))
if (legend_full) {
cols <- (scales::hue_pal())(n.experts + 2)
linetypes <- c(rep("dashed", n.experts), "solid", "solid")
sizes <- lwd * c(rep(0.5, n.experts), 1.5, 1.5)
names(cols) <- names(linetypes) <- names(sizes) <- c(expertnames,
lpname)
p1 <- ggplot(df1, aes(x = x, y = fx, colour = expert,
linetype = expert, size = expert)) + scale_colour_manual(values = cols,
breaks = c(expertnames, lpname)) + scale_linetype_manual(values = linetypes,
breaks = c(expertnames, lpname)) + scale_size_manual(values = sizes,
breaks = c(expertnames, lpname))
}
else {
p1 <- ggplot(df1, aes(x = x, y = fx, colour = ftype,
linetype = ftype, size = ftype)) + scale_linetype_manual(name = "distribution",
values = c("dashed", "solid", "solid")) + scale_size_manual(name = "distribution",
values = lwd * c(0.5, 1.5, 1.5)) + scale_color_manual(name = "distribution",
values = c("black", "red", "blue"))
}
if (legend_full) {
for (i in 1:n.experts) {
if (d[i] == "hist") {
p1 <- p1 + geom_step(data = subset(df1, expert ==
expertnames[i]), aes(colour = expert))
}
else {
p1 <- p1 + geom_line(data = subset(df1, expert ==
expertnames[i]), aes(colour = expert))
}
}
}
else {
for (i in 1:n.experts) {
if (d[i] == "hist") {
p1 <- p1 + geom_step(data = subset(df1, expert ==
expertnames[i]), aes(colour = ftype))
}
else {
p1 <- p1 + geom_line(data = subset(df1, expert ==
expertnames[i]), aes(colour = ftype))
}
}
}
if (length(unique(d)) == 1 & d[1] == "hist") {
p1 <- p1 + geom_step(data = subset(df1, expert == lpname),
aes(colour = expert))
}
else {
p1 <- p1 + geom_line(data = subset(df1, expert == lpname[1]),
aes(colour = expert))
p1 <- p1 + geom_line(data = subset(df1, expert == lpname[2]),
aes(colour = expert))
}
p1 <- p1 + labs(x = xlab, y = ylab)
if ((!is.null(ql)) & (!is.null(qu)) & addquantile) {
if (legend_full) {
ribbon_col <- (scales::hue_pal())(n.experts + 2)[n.experts +
2]
}
else {
ribbon_col <- "red"
}
p1 <- p1 + geom_ribbon(data = with(df1, subset(df1,
x <= ql & expert == lpname[1])), aes(ymax = fx,
ymin = 0), alpha = 0.2, show.legend = FALSE, colour = NA,
fill = ribbon_col) + geom_ribbon(data = with(df1,
subset(df1, x >= qu & expert == lpname[2])), aes(ymax = fx,
ymin = 0), alpha = 0.2, show.legend = FALSE, colour = NA,
fill = ribbon_col)
p1 <- p1 + geom_ribbon(data = with(df1, subset(df1,
x <= ql & expert == lpname[2])), aes(ymax = fx,
ymin = 0), alpha = 0.2, show.legend = FALSE, colour = NA,
fill = ribbon_col) + geom_ribbon(data = with(df1,
subset(df1, x >= qu & expert == lpname[2])), aes(ymax = fx,
ymin = 0), alpha = 0.2, show.legend = FALSE, colour = NA,
fill = ribbon_col)
}
if (lpname[1] == "marginal") {
p1 <- p1 + theme(legend.title = element_blank())
}
p1 + theme(text = element_text(size = fs))
}
qhist<-function(q, z, pz){
stats::approx(pz, z, q)$y
}
makeSingleExpertPlot <- function(fit, d = "best", pl = -Inf, pu = Inf,
ql = NA, qu = NA, sf = 3, ex = 1,
lwd = 1, xlab, ylab, percentages ){
if(d == "best"){
d <- fit$best.fitting[ex, 1]
}
if(d == "normal"){
if(pl == -Inf){pl <- qnorm(0.001, fit$Normal[ex,1], fit$Normal[ex,2])}
if(pu == Inf){pu <- qnorm(0.999, fit$Normal[ex,1], fit$Normal[ex,2])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- qnorm(ql, fit$Normal[ex,1], fit$Normal[ex,2])
x <- sort(c(x, x.q1))
}
if(is.na(qu) == F){
x.q2 <- qnorm(qu, fit$Normal[ex,1], fit$Normal[ex,2])
x <- sort(c(x, x.q2))
}
fx <- dnorm(x, fit$Normal[ex,1], fit$Normal[ex,2])
dist.title <- paste("Normal (mean = ",
signif(fit$Normal[ex,1], sf),
", sd = ",
signif(fit$Normal[ex,2], sf), ")",
sep="")
}
if(d == "skewnormal"){
if(pl == -Inf){pl <- sn::qsn(0.001, fit$Skewnormal[ex,1],fit$Skewnormal[ex,2] , fit$Skewnormal[ex,3] )}
if(pu == Inf){pu <- sn::qsn(0.999, fit$Skewnormal[ex,1],fit$Skewnormal[ex,2] , fit$Skewnormal[ex,3])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- sn::qsn(ql, fit$Skewnormal[ex,1],fit$Skewnormal[ex,2] , fit$Skewnormal[ex,3])
x <- sort(c(x, x.q1))
}
if(is.na(qu) == F){
x.q2 <- sn::qsn(qu, fit$Skewnormal[ex,1],fit$Skewnormal[ex,2] , fit$Skewnormal[ex,3])
x <- sort(c(x, x.q2))
}
fx <- sn::dsn(x, fit$Skewnormal[ex,1],fit$Skewnormal[ex,2] , fit$Skewnormal[ex,3])
dist.title <- paste("Skew normal\n(location = ",
signif(fit$Skewnormal[ex,1], sf),
", scale = ",
signif(fit$Skewnormal[ex,2], sf),
", slant = ",
signif(fit$Skewnormal[ex,3], sf),")",
sep="")
}
if(d == "t"){
if(pl == -Inf){pl <- fit$Student.t[ex,1] + fit$Student.t[ex,2] * qt(0.001, fit$Student.t[ex,3])}
if(pu == Inf){pu <- fit$Student.t[ex,1] + fit$Student.t[ex,2] * qt(0.999, fit$Student.t[ex,3])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- fit$Student.t[ex,1] + fit$Student.t[ex,2] * qt(ql, fit$Student.t[ex,3])
x <- sort(c(x, x.q1))
}
if(is.na(qu) == F){
x.q2 <- fit$Student.t[ex,1] + fit$Student.t[ex,2] * qt(qu, fit$Student.t[ex,3])
x <- sort(c(x, x.q2))
}
fx <- dt((x - fit$Student.t[ex,1])/fit$Student.t[ex,2], fit$Student.t[ex,3])/fit$Student.t[ex,2]
dist.title=paste("Student-t(",
signif(fit$Student.t[ex,1], sf),
", ",
signif(fit$Student.t[ex,2], sf),
"), df = ",
fit$Student.t[ex, 3],
sep="")
}
if(d == "gamma"){
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
if(pl == -Inf){pl <- xl + qgamma(0.001, fit$Gamma[ex,1], fit$Gamma[ex,2])}
if(pu == Inf){pu <- xl + qgamma(0.999, fit$Gamma[ex,1], fit$Gamma[ex,2])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xl + qgamma(ql, fit$Gamma[ex,1], fit$Gamma[ex,2])
x <- sort(c(x, x.q1))
}
if(is.na(qu) == F){
x.q2 <- xl + qgamma(qu, fit$Gamma[ex,1], fit$Gamma[ex,2])
x <- sort(c(x, x.q2))
}
fx <- dgamma(x - xl, fit$Gamma[ex,1], fit$Gamma[ex,2])
if(fit$Gamma[ex,1] == 1){
dist.title = paste("Gamma(",
signif(fit$Gamma[ex,1], sf),
", ",
signif(fit$Gamma[ex,2], sf),
") (exponential)", sep="")}else{
dist.title = paste("Gamma(",
signif(fit$Gamma[ex,1], sf),
", ",
signif(fit$Gamma[ex,2], sf),
")", sep="")
}
}
if(d == "lognormal"){
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
if(pl == -Inf){pl <- xl + qlnorm(0.001, fit$Log.normal[ex,1], fit$Log.normal[ex,2])}
if(pu == Inf){pu <- xl + qlnorm(0.999, fit$Log.normal[ex,1], fit$Log.normal[ex,2])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xl + qlnorm(ql, fit$Log.normal[ex,1], fit$Log.normal[ex,2])
x <- sort(c(x, x.q1))}
if(is.na(qu) == F){
x.q2 <- xl + qlnorm(qu, fit$Log.normal[ex,1], fit$Log.normal[ex,2])
x <- sort(c(x, x.q2))}
fx <- dlnorm(x - xl, fit$Log.normal[ex,1], fit$Log.normal[ex,2])
dist.title = paste("Log normal(",
signif(fit$Log.normal[ex,1], sf),
", ",
signif(fit$Log.normal[ex,2], sf), ")",
sep="")
}
if(d == "logt"){ # log student t
xl <- fit$limits[ex,1]
if(xl == -Inf){xl <- 0}
# Calculate axes limits using the lognormal; log-t limits may be too extreme
if(pl == -Inf){pl <- xl + qlnorm(0.001, fit$Log.normal[ex,1], fit$Log.normal[ex,2])}
if(pu == Inf){pu <- xl + qlnorm(0.999, fit$Log.normal[ex,1], fit$Log.normal[ex,2])}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xl + exp(fit$Log.Student.t[ex,1] + fit$Log.Student.t[ex,2] * qt(ql, fit$Log.Student.t[ex,3]))
x <- sort(c(x, x.q1))}
if(is.na(qu) == F){
x.q2 <- xl + exp(fit$Log.Student.t[ex,1] + fit$Log.Student.t[ex,2] * qt(qu, fit$Log.Student.t[ex,3]))
x <- sort(c(x, x.q2))}
fx <- dt( (log(x - xl) - fit$Log.Student.t[ex,1]) / fit$Log.Student.t[ex,2], fit$Log.Student.t[ex,3]) / ((x - xl) * fit$Log.Student.t[ex,2])
dist.title = paste("Log T(",
signif(fit$Log.Student.t[ex,1], sf),
", ",
signif(fit$Log.Student.t[ex,2], sf),
"), df = ",
fit$Log.Student.t[ex,3], sep="")
}
if(d == "beta"){
xl <- fit$limits[ex,1]
xu <- fit$limits[ex,2]
#if(xl == -Inf){xl <- 0}
#if(xu == Inf){xu <- 1}
# if(pl == -Inf){pl <- xl + (xu - xl) * qbeta(0.001, fit$Beta[ex,1], fit$Beta[ex,2])}
# if(pu == Inf){pu <- xl + (xu - xl) * qbeta(0.999, fit$Beta[ex,1], fit$Beta[ex,2])}
if(pl == -Inf){pl <- xl}
if(pu == Inf){pu <- xu}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xl + (xu - xl) * qbeta(ql, fit$Beta[ex,1], fit$Beta[ex,2])
x <- sort(c(x, x.q1))}
if(is.na(qu) == F){
x.q2 <- xl + (xu - xl) * qbeta(qu, fit$Beta[ex,1], fit$Beta[ex,2])
x <- sort(c(x, x.q2))}
fx <- 1/(xu - xl) * dbeta( (x - xl) / (xu - xl), fit$Beta[ex,1], fit$Beta[ex,2])
dist.title =paste("Beta(",
signif(fit$Beta[ex,1], sf),
", ", signif(fit$Beta[ex,2], sf),
")", sep="")
}
if(d == "hist"){
if(fit$limits[ex, 1] == -Inf){
histl <- qnorm(0.001, fit$Normal[ex,1], fit$Normal[ex,2])
}else{
histl <- fit$limits[ex, 1]
}
if(fit$limits[ex, 2] == Inf){
histu <- qnorm(0.999, fit$Normal[ex,1], fit$Normal[ex,2])
}else{
histu <- fit$limits[ex, 2]
}
if(pl == -Inf){pl <- histl }
if(pu == Inf){pu <- histu }
p <- c(0, fit$probs[ex,], 1)
x2 <- c(histl, fit$vals[ex,], histu)
h <- rep(0, length(x2) -1)
for(i in 1:length(h)){
h[i]<-(p[i+1] - p[i]) / (x2[i+1]-x2[i])
}
x <- rep(x2, each = 2)
fx <- c(0, rep(h, each = 2), 0)
if(is.na(ql) == F){
x.q1 <- qhist(ql, x2, p)
if(!is.element(x.q1, x)){
x <- c(x, x.q1)
fx <-c(fx, dhist(x.q1, x2, p))
temp <- sort(x, index.return = T)
x <- temp$x
fx <- fx[temp$ix]}}
if(is.na(qu) == F){
x.q2 <- qhist(qu, x2, p)
if(!is.element(x.q2, x)){
x <- c(x, x.q2)
fx <-c(fx, dhist(x.q2, x2, p))
temp <- sort(x, index.return = T)
x <- temp$x
fx <- fx[temp$ix]}}
if(min(fx)<0){
fx <- rep(0, length(x))
ql <- NA
qu <- NA
}
dist.title = "histogram fit"
}
if(d == "mirrorgamma"){
xu <- fit$limits[ex, 2]
if(pl == -Inf){pl <- xu - qgamma(0.999, fit$mirrorgamma[ex,1],
fit$mirrorgamma[ex,2])}
if(pu == Inf){pu <- xu}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xu - qgamma(1 - ql, fit$mirrorgamma[ex,1],
fit$mirrorgamma[ex,2])
x <- sort(c(x, x.q1))
}
if(is.na(qu) == F){
x.q2 <- xu - qgamma(1 - qu, fit$mirrorgamma[ex,1],
fit$mirrorgamma[ex,2])
x <- sort(c(x, x.q2))
}
fx <- dgamma(xu - x, fit$mirrorgamma[ex,1],
fit$mirrorgamma[ex,2])
if(fit$mirrorgamma[ex,1] ==1){
dist.title = paste("Mirror gamma(",
signif(fit$mirrorgamma[ex,1], sf),
", ",
signif(fit$mirrorgamma[ex,2], sf),
") (mirror exponential)", sep="")}else{
dist.title = paste("Mirror gamma(",
signif(fit$mirrorgamma[ex,1], sf),
", ",
signif(fit$mirrorgamma[ex,2], sf),
")", sep="")
}
}
if(d == "mirrorlognormal"){
xu <- fit$limits[ex, 2]
if(pl == -Inf){pl <- xu - qlnorm(0.999, fit$mirrorlognormal[ex,1],
fit$mirrorlognormal[ex,2])}
if(pu == Inf){pu <- xu}
x <- seq(from = pl, to = pu, length = 200)
if(is.na(ql) == F){
x.q1 <- xu - qlnorm(1 - ql,
fit$mirrorlognormal[ex,1],
fit$mirrorlognormal[ex,2])
x <- sort(c(x, x.q1))}
if(is.na(qu) == F){
x.q2 <- xu - qlnorm(1 - qu,
fit$mirrorlognormal[ex,1],
fit$mirrorlognormal[ex,2])
x <- sort(c(x, x.q2))}
fx <- dlnorm(xu - x, fit$mirrorlognormal[ex,1],
fit$mirrorlognormal[ex,2])
dist.title = paste("Mirror log normal(",
signif(fit$mirrorlognormal[ex,1], sf),
", ",
signif(fit$mirrorlognormal[ex,2], sf), ")",
sep="")
}
if(d == "mirrorlogt"){ # mirror log student t
xu <- fit$limits[ex, 2]
# Calculate axes limits using the mirror lognormal; log-t limits may be too extreme
if(pl == -Inf){pl <- xu - qlnorm(0.999,
fit$mirrorlognormal[ex,1],
fit$mirrorlognormal[ex,2])}
if(pu == Inf){pu <- xu}
x <- seq(from = pl, to = 0.99*xu, length = 200)
if(is.na(ql) == F){
x.q1 <- xu - exp(fit$mirrorlogt[ex,1] +
fit$mirrorlogt[ex,2] * qt(1 - ql, fit$mirrorlogt[ex,3]))
x <- sort(c(x, x.q1))}
if(is.na(qu) == F){
x.q2 <-
xu - exp(fit$mirrorlogt[ex,1] +
fit$mirrorlogt[ex,2] * qt(1 - qu, fit$mirrorlogt[ex,3]))
x <- sort(c(x, x.q2))}
fx <- dt( (log(xu - x) - fit$mirrorlogt[ex,1]) /
fit$mirrorlogt[ex,2],
fit$mirrorlogt[ex,3]) / ((xu - x) *
fit$mirrorlogt[ex,2])
dist.title = paste("Mirror log T(",
signif(fit$mirrorlogt[ex,1], sf),
", ",
signif(fit$mirrorlogt[ex,2], sf),
"), df = ",
fit$mirrorlogt[ex,3], sep="")
}
df1 <- data.frame(x = x, fx = fx)
p1 <- ggplot(df1, aes(x = x, y = fx)) +
geom_line(size = lwd) +
labs(title = dist.title, x = xlab, y = ylab )+
theme(plot.title = element_text(hjust = 0.5))
if(is.na(ql) == F ){
p1 <- p1 + geom_ribbon(data = subset(df1, x<=x.q1),
aes(ymax = fx, ymin = 0),
fill = "red",
alpha = 0.5)
}
if(is.na(qu) == F ){
p1 <- p1 + geom_ribbon(data = subset(df1, x>=x.q2),
aes(ymax = fx, ymin = 0),
fill = "red",
alpha = 0.5)
}
if(percentages){
p1 <- p1 + scale_x_continuous(labels = scales::percent,
limits = c(pl, pu))
}else{
p1 <- p1 + xlim(pl, pu)
}
p1
}
#' Plotting Pooled Expert Opinion
#'
#' Returns a ggplot with the individual expert opinions along with the pooled distributions (both linear and logarithmic).
#'
#' @param object Either a object of class elicitation (from `SHELF`) or a dataframe with parameters of the distribution (see Example below).
#' @param xl_plt Optionally set the lower bound for the plot
#' @param xu_plt Optionally set the upper bound for the plot
#' @param weights A vector with the weight of each expert. If omitted, set to equal weights.
#' @param St_indic Set to 1 if you want to truncate the distributions to be between 0 and 1.
#' @return A ggplot with pooled distributions.
#' @export
#' @examples
#' expert_df <- data.frame(dist = c("norm","t"), #Distribution Name
#' wi = c(1/3,2/3), #Expert weights
#' param1 = c(0.3,0.40), #Parameter 1
#' param2 = c(0.05,0.05),# Parameter 2
#' param3 = c(NA,3)) #Parameter 3: Only t-distribution
#' \donttest{
#' plot_expert_opinion(expert_df , weights = expert_df$wi)
#' }
#'
plot_expert_opinion <- function(object, xl_plt = NULL, xu_plt = NULL, weights = NULL, St_indic =0){
if(is.null(weights)){
weights <- 1
}
if(inherits(object,"elicitation")){
if(is.null(xl_plt)){
xl_plt <- min(object$limits["lower"])
}
if(is.null(xu_plt)){
xu_plt <- max(object$limits["upper"])
}
if(St_indic ==1){
xl_plt <- max(0, xl_plt)
xu_plt <- min(1,xu_plt)
}
plt <- makePoolPlot(fit= object,
xl =xl_plt,
xu =xu_plt,
d = "best",
w = weights,
lwd =1,
xlab = "x",
ylab =expression(f[X](x)),
legend_full = TRUE,
ql = NULL,
qu = NULL,
nx = 200,
addquantile = FALSE,
fs = 12,
expertnames = NULL,
St_indic = St_indic)
}else{
object$times_expert <- 2 #Just for compatibility
expert_dens_list <- expert_dens(object, probs = seq(0.001, 0.99, by = 0.005))
lower <- as.numeric(utils::head(expert_dens_list$expert_density, n = 1)-0.1)
upper <- as.numeric(utils::tail(expert_dens_list$expert_density, n = 1)+0.1)
# if(is.null(lower) || is.null(upper)){
# stop("Upper and lower bounds required for distributions")
# }
if(is.null(xl_plt)){
xl_plt <- min(lower)
}
if(is.null(xu_plt)){
xu_plt <- max(upper)
}
if(St_indic ==1){
xl_plt <- max(0, xl_plt)
xu_plt <- min(1,xu_plt)
}
probs_mat <- matrix(as.numeric(rep(rownames(expert_dens_list$expert_density),
dim(expert_dens_list$expert_density)[2])),
ncol = dim(expert_dens_list$expert_density)[2])
fit_shelf <- SHELF::fitdist(vals = expert_dens_list$expert_density,
probs_mat, lower = lower, upper = upper)
plt <- makePoolPlot(fit= fit_shelf,
xl = xl_plt,
xu = xu_plt,
d = "best",
w = weights,
lwd =1,
xlab = "x",
ylab =expression(f[X](x)),
legend_full = TRUE,
ql = NULL,
qu = NULL,
nx = 200,
addquantile = FALSE,
fs = 12,
expertnames = NULL,
St_indic = St_indic)
}
return(plt+theme_bw())
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.