Nothing
##' Nonparametric estimator of survival from right-truncated, uncensored data
##'
##' Estimates the survivor function from right-truncated, uncensored data by
##' reversing time, interpreting the data as left-truncated, applying the
##' Kaplan-Meier / Lynden-Bell estimator and transforming back.
##'
##' Note that this does not estimate the untruncated survivor function - instead
##' it estimates the survivor function truncated above at a time defined by the
##' maximum possible time that might have been observed in the data.
##'
##' @param t Vector of observed times from an initial event to a final event.
##'
##' @param rtrunc Individual-specific right truncation points, so that each
##' individual's survival time \code{t} would not have been observed if it was
##' greater than the corresponding element of \code{rtrunc}. If any of these
##' are greater than \code{tmax}, then the actual individual-level truncation
##' point for these individuals is taken to be \code{tmax}.
##'
##' @param tmax Maximum possible time to event that could have been observed.
##'
##' @param data Data frame to find \code{t} and \code{rtrunc} in. If not
##' supplied, these should be in the working environment.
##'
##' @param eps Small number that is added to \code{t} before implementing the
##' time-reversed estimator, to ensure the risk set is consistent between
##' forward and reverse time scales. It should be just large enough that
##' \code{t+eps} is not \code{==t}. This should not need changing from the
##' default of 0.001, unless \code{t} are extremely large or small and the
##' data are rounded to integer.
##'
##' @param conf.int Confidence level, defaulting to 0.95.
##'
##' @return A list with components:
##'
##' \code{time} Time points where the estimated survival changes.
##'
##' \code{surv} Estimated survival at \code{time}, truncated above at
##' \code{tmax}.
##'
##' \code{se.surv} Standard error of survival.
##'
##' \code{std.err} Standard error of -log(survival). Named this way for consistency with \code{survfit}.
##'
##' \code{lower} Lower confidence limits for survival.
##'
##' \code{upper} Upper confidence limits for survival.
##'
##' @details
##'
##' Define \eqn{X} as the time of the initial event, \eqn{Y} as the time of the
##' final event, then we wish to determine the distribution of \eqn{T = Y- X}.
##'
##' Observations are only recorded if \eqn{Y \leq t_{max}}. Then the
##' distribution of \eqn{T} in the resulting sample is right-truncated by
##' \code{rtrunc} \eqn{ = t_{max} - X}.
##'
##' Equivalently, the distribution of \eqn{t_{max} - T} is left-truncated, since
##' it is only observed if \eqn{t_{max} - T \geq X}. Then the standard
##' Kaplan-Meier type estimator as implemented in
##' \code{\link[survival]{survfit}} is used (as described by Lynden-Bell, 1971)
##' and the results transformed back.
##'
##' This situation might happen in a disease epidemic, where \eqn{X} is the date
##' of disease onset for an individual, \eqn{Y} is the date of death, and we
##' wish to estimate the distribution of the time \eqn{T} from onset to death,
##' given we have only observed people who have died by the date \eqn{t_{max}}.
##'
##' If the estimated survival is unstable at the highest times, then consider
##' replacing \code{tmax} by a slightly lower value, then if necessary, removing
##' individuals with \code{t > tmax}, so that the estimand is changed to the
##' survivor function truncated over a slightly narrower interval.
##'
##' @examples
##'
##' ## simulate some event time data
##' set.seed(1)
##' X <- rweibull(100, 2, 10)
##' T <- rweibull(100, 2, 10)
##'
##' ## truncate above
##' tmax <- 20
##' obs <- X + T < tmax
##' rtrunc <- tmax - X
##' dat <- data.frame(X, T, rtrunc)[obs,]
##' sf <- expertsurv:::survrtrunc(T, rtrunc, data=dat, tmax=tmax)
##' plot(sf, conf.int=TRUE)
##' ## Kaplan-Meier estimate ignoring truncation is biased
##' sfnaive <- survfit(Surv(T) ~ 1, data=dat)
##' lines(sfnaive, conf.int=TRUE, lty=2, col="red")
##'
##' ## truncate above the maximum observed time
##' tmax <- max(X + T) + 10
##' obs <- X + T < tmax
##' rtrunc <- tmax - X
##' dat <- data.frame(X, T, rtrunc)[obs,]
##' sf <- expertsurv:::survrtrunc(T, rtrunc, data=dat, tmax=tmax)
##' plot(sf, conf.int=TRUE)
##' ## estimates identical to the standard Kaplan-Meier
##' sfnaive <- survfit(Surv(T) ~ 1, data=dat)
##' lines(sfnaive, conf.int=TRUE, lty=2, col="red")
##'
##'
##' @references
##'
##' D. Lynden-Bell (1971) A method of allowing for known observational
##' selection in small samples applied to 3CR quasars. Monthly Notices of the
##' Royal Astronomical Society, 155:95–118.
##'
##' Seaman, S., Presanis, A. and Jackson, C. (2020) Review of methods for
##' estimating distribution of time to event from right-truncated data.
##' @noRd
survrtrunc <- function(t, rtrunc, tmax, data=NULL, eps=0.001, conf.int=0.95){
t <- eval(substitute(t), data, parent.frame())
rtrunc <- eval(substitute(rtrunc), data, parent.frame())
check_survrtrunc(t, rtrunc, tmax)
rtrunc[rtrunc > tmax] <- tmax
X <- tmax - rtrunc - eps
trev <- tmax - t
event <- rep(1, length(X))
sfleft <- survival::survfit(Surv(time=X, time2=trev, event=event, type="counting") ~ 1)
sf <- list(time = rev(tmax - sfleft$time),
surv = c(rev(1 - sfleft$surv)[-1], 0))
d <- sfleft$n.event
N <- sfleft$n.risk
cdf <- 1 - sf$surv[-length(sf$surv)]
h <- d / (N*(N - d))
se <- sqrt(cdf^2 * rev(cumsum(h[-length(h)])))
selog <- sqrt((1/log(cdf)^2) * rev(cumsum(h[-length(h)])))
L <- log(-log(cdf))
alpha <- (1 - conf.int)/2
lower <- exp(-exp(L + qnorm(alpha)*selog))
upper <- exp(-exp(L - qnorm(alpha)*selog))
se <- c(se, 0); selog <- c(selog, 0); lower <- c(lower, 1); upper <- c(upper, 1)
sf <- list(surv=sf$surv, time=sf$time, se.surv=se, std.err=selog, lower=1-lower, upper=1-upper)
class(sf) <- "survrtrunc"
sf
}
check_survrtrunc <- function(t, rtrunc, tmax) {
if (!all(t <= rtrunc)) stop("Not all `t` are <= `rtrunc`")
if (!all(t <= tmax)) stop("Not all `t` are <= `tmax`")
}
##' Plot nonparametric estimates of survival from right-truncated data.
##'
##' \code{plot.survrtrunc} creates a new plot, while \code{lines.survrtrunc} adds lines to an exising plot.
##'
##' @param x Object of class \code{"survrtrunc"} as returned by \code{\link{survrtrunc}}.
##'
##' @param ... Other arguments to be passed to \code{\link[survival]{plot.survfit}} or \code{\link[survival]{lines.survfit}}.
##'
##' @noRd
plot.survrtrunc <- function(x, ...){
class(x) <- "survfit"
plot(x, ...)
}
##' @exportS3Method NULL
lines.survrtrunc <- function(x, ...){
class(x) <- "survfit"
lines(x, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.