radf_sb_cv | R Documentation |
radf_sb_cv
computes critical values for the panel recursive unit root test using
the sieve bootstrap procedure outlined in Pavlidis et al. (2016). radf_sb_distr
computes the distribution.
radf_sb_cv(data, minw = NULL, lag = 0L, nboot = 500L, seed = NULL)
radf_sb_distr(data, minw = NULL, lag = 0L, nboot = 500L, seed = NULL)
data |
A univariate or multivariate numeric time series object, a numeric vector or matrix, or a data.frame. The object should not have any NA values. |
minw |
A positive integer. The minimum window size (default =
|
lag |
A non-negative integer. The lag length of the Augmented Dickey-Fuller regression (default = 0L). |
nboot |
A positive integer. Number of bootstraps (default = 500L). |
seed |
An object specifying if and how the random number generator (rng)
should be initialized. Either NULL or an integer will be used in a call to
|
For radf_sb_cv
A list A list that contains the critical values
for the panel BSADF and panel GSADF test statistics. For radf_wb_dist
a numeric vector
that contains the distribution of the panel GSADF statistic.
Pavlidis, E., Yusupova, A., Paya, I., Peel, D., Martínez-García, E., Mack, A., & Grossman, V. (2016). Episodes of exuberance in housing markets: In search of the smoking gun. The Journal of Real Estate Finance and Economics, 53(4), 419-449.
radf_mc_cv
for Monte Carlo critical values and
radf_wb_cv
for wild Bootstrap critical values
rsim_data <- radf(sim_data, lag = 1)
# Critical vales should have the same lag length with \code{radf()}
sb <- radf_sb_cv(sim_data, lag = 1)
tidy(sb)
summary(rsim_data, cv = sb)
autoplot(rsim_data, cv = sb)
# Simulate distribution
sdist <- radf_sb_distr(sim_data, lag = 1, nboot = 1000)
autoplot(sdist)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.