radf_wb_cv2 | R Documentation |
radf_wb_cv
performs the Phillips & Shi (2020) wild bootstrap re-sampling
scheme, which is asymptotically robust to non-stationary volatility, to
generate critical values for the recursive unit root tests. radf_wb_distr2
computes the distribution.
radf_wb_cv2(
data,
minw = NULL,
nboot = 500L,
adflag = 0,
type = c("fixed", "aic", "bic"),
tb = NULL,
seed = NULL
)
radf_wb_distr2(
data,
minw = NULL,
nboot = 500L,
adflag = 0,
type = c("fixed", "aic", "bic"),
tb = NULL,
seed = NULL
)
data |
A univariate or multivariate numeric time series object, a numeric vector or matrix, or a data.frame. The object should not have any NA values. |
minw |
A positive integer. The minimum window size (default =
|
nboot |
A positive integer. Number of bootstraps (default = 500L). |
adflag |
A positive integer. Number of lags when type is "fixed" or number of max lags when type is either "aic" or "bic". |
type |
Character. "fixed" for fixed lag, "aic" or "bic" for automatic lag selection according to the criterion. |
tb |
A positive integer. The simulated sample size. |
seed |
An object specifying if and how the random number generator (rng)
should be initialized. Either NULL or an integer will be used in a call to
|
For radf_wb_cv2
a list that contains the critical values for the ADF,
BADF, BSADF and GSADF tests. For radf_wb_distr
a list that
contains the ADF, SADF and GSADF distributions.
Phillips, P. C., & Shi, S. (2020). Real time monitoring of asset markets: Bubbles and crises. In Handbook of Statistics (Vol. 42, pp. 61-80). Elsevier.
Phillips, P. C. B., Shi, S., & Yu, J. (2015). Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&P 500. International Economic Review, 56(4), 1043-1078.
radf_mc_cv
for Monte Carlo critical values and
radf_sb_cv
for sieve bootstrap critical values.
# Default minimum window
wb <- radf_wb_cv2(sim_data)
tidy(wb)
# Change the minimum window and the number of bootstraps
wb2 <- radf_wb_cv2(sim_data, nboot = 600, minw = 20)
tidy(wb2)
# Simulate distribution
wdist <- radf_wb_distr(sim_data)
autoplot(wdist)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.