| radf_wb_cv | R Documentation | 
radf_wb_cv performs the Harvey et al. (2016) wild bootstrap re-sampling
scheme, which is asymptotically robust to non-stationary volatility, to
generate critical values for the recursive unit root tests. radf_wb_distr
computes the distribution.
radf_wb_cv(data, minw = NULL, nboot = 500L, dist_rad = FALSE, seed = NULL)
radf_wb_distr(data, minw = NULL, nboot = 500L, dist_rad = FALSE, seed = NULL)
data | 
 A univariate or multivariate numeric time series object, a numeric vector or matrix, or a data.frame. The object should not have any NA values.  | 
minw | 
 A positive integer. The minimum window size (default =
  | 
nboot | 
 A positive integer. Number of bootstraps (default = 500L).  | 
dist_rad | 
 Logical. If TRUE then the Rademacher distribution will be used.  | 
seed | 
 An object specifying if and how the random number generator (rng)
should be initialized. Either NULL or an integer will be used in a call to
  | 
This approach involves applying a wild bootstrap re-sampling scheme to construct the bootstrap analogue of the Phillips et al. (2015) test which is asymptotically robust to non-stationary volatility.
For radf_wb_cv a list that contains the critical values for the ADF,
BADF, BSADF and GSADF tests. For radf_wb_distr a list that
contains the ADF, SADF and GSADF distributions.
Harvey, D. I., Leybourne, S. J., Sollis, R., & Taylor, A. M. R. (2016). Tests for explosive financial bubbles in the presence of non-stationary volatility. Journal of Empirical Finance, 38(Part B), 548-574.
Phillips, P. C. B., Shi, S., & Yu, J. (2015). Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&P 500. International Economic Review, 56(4), 1043-1078.
radf_mc_cv for Monte Carlo critical values and
radf_sb_cv for sieve bootstrap critical values.
# Default minimum window
wb <- radf_wb_cv(sim_data)
tidy(wb)
# Change the minimum window and the number of bootstraps
wb2 <- radf_wb_cv(sim_data, nboot = 600, minw = 20)
tidy(wb2)
# Simulate distribution
wdist <- radf_wb_distr(sim_data)
autoplot(wdist)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.