Nothing
#' pr_plot
#' @description precision-recall plot
#' @inheritParams area_plot
#' @inheritParams line_plot
#' @inheritParams roc_plot
#' @param labs 'short' or 'long'
#' @export
#' @examples
#' library(ggplot2)
#' n = 1000
#' df = data.frame(actual = sample(c(FALSE, TRUE), n, replace = TRUE),
#' runif = runif(n))
#' df[["fitted"]] = runif(n) ^ ifelse(df[["actual"]] == 1, 0.5, 2)
#'
#' density_plot(df, "fitted", "actual")
#'
#' pr_plot(df, "fitted", "actual")
#' pr_plot(df, "runif", "actual", size_line = 0.5)
#'
#'\donttest{
#' library(dplyr, warn.conflicts = FALSE)
#' pr_plot(df, "fitted", "actual", "sample(c(1, 2), n(), TRUE)")
#'
#' pr_plot(df, "fitted", "actual",
#' "sample(c(1, 2), n(), TRUE)",
#' "sample(c(3, 4), n(), TRUE)")
#'
#' pr_plot(df, "fitted", "actual",
#' "sample(c(1, 2), n(), TRUE)",
#' "sample(c(3, 4), n(), TRUE)",
#' "sample(c(5, 6), n(), TRUE)")
#'}
pr_plot = function(data,
fitted,
actual,
group = NULL,
facet_x = NULL,
facet_y = NULL,
palette = ez_col,
size_line = 1,
size = 11,
labs = "short",
env = parent.frame()) {
cols = c(actual = unname(actual),
fitted = unname(fitted),
group = unname(group),
facet_x = unname(facet_x),
facet_y = unname(facet_y))
data = data %>%
ungroup %>%
transmute(!!!lapply(cols,
function(x) rlang::parse_quo(x, env = env)))
total = data %>%
tibble::as_tibble() %>%
summarize(prec_rec = list(prec_rec(fitted, actual)))
gdata = data %>%
group_by(!!!syms(intersect(names(cols),
c("group", "facet_x", "facet_y")))) %>%
summarize(prec_rec = list(prec_rec(fitted, actual))) %>%
ungroup %>%
tidyr::unnest(prec_rec)
g = ggplot(gdata)
if (exists("group", gdata)) {
g = g +
geom_path(aes(x = recall,
y = precision,
colour = factor(group)),
linewidth = size_line) +
scale_colour_manual(NULL, values = palette(n_distinct(gdata[["group"]])))
} else {
g = g +
geom_path(aes(x = recall,
y = precision),
linewidth = size_line)
}
g = quick_facet(g)
if (labs == "long") {
xlab = 'Recall\nTrue Positive Rate\nSensitivity\nTP/P'
ylab = 'Precision\nPositive Predictive Value\nTP/(TP+FP)'
} else {
xlab = "Recall"
ylab = "Precision"
}
g = g +
geom_path(data = data.frame(x = c(0, 1)),
y = mean(data$actual),
aes(x, y),
linewidth = size_line,
linetype = 2) +
coord_equal() +
theme_minimal(size) +
xlab(xlab) +
ylab(ylab) +
scale_y_continuous(labels = ez_labels, limits = c(0, 1)) +
scale_x_continuous(labels = ez_labels, limits = c(0, 1)) +
theme(plot.title = element_text(hjust = 0.5))
g
}
globalVariables(c("precision", "recall"))
#' prec_rec
#' @description Precision recall calculation
#' @param fitted Vector with values between 0 and 1
#' @param actual Vector with two levels
#' @examples
#' ezplot:::prec_rec(runif(1), sample(c(TRUE, FALSE), 1, replace = TRUE))
#' ezplot:::prec_rec(runif(5), sample(c(TRUE, FALSE), 5, replace = TRUE))
prec_rec = function(fitted, actual) {
ind = !is.na(actual) & !is.na(fitted)
actual = actual[ind]
fitted = fitted[ind]
count = sum(actual == actual[1])
if (sum(ind) == 0 | count == 0 | count == length(actual)) {
return(
data.frame(
rec = NA,
prec = NA
)
)
}
pred = ROCR::prediction(as.numeric(fitted), actual)
perf = ROCR::performance(pred, "prec", "rec") # precision = ppv, recall = TPR
x = perf@x.values[[1]]
y = perf@y.values[[1]]
data.frame(recall = x,
precision = y) %>%
filter(!is.na(precision))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.