Description Usage Arguments Value Author(s) See Also Examples
There are 3 different modes to plot an ezsim object. 'summary'
, 'density'
and 'powerfun'
plot the summary statistics,density function and power function of an ezsim object respectively.
'summary'
: The y-variable of the plot are summary statistics of the estimator. Two confidence bounds will be shaded in the plot. 25% and 75% percentile will form a 50% confidence bound. Similarly, 2.5% and 97.5% percentile will form a 95% confidence bound. Each plot have only one estimator. The scalars parameter has the longest length will be the x-variable of the plot. The rest of the selection parameters will be become the facets of the plot (see ggplot2).
density
: Density plot of the estimator. Each plot have only one estimator. selection parameter will appear as different colour and in different facets.
powerfun
: Plot the power function of test(s). Estimators have to be a test (value = 1 if rejecting the null hypothesis, value = 0 if fail to reject the null hypothesis) banker parameters will not be shown in the graph.
1 2 3 4 |
x |
An ezsim object |
type |
Type of plot |
subset |
subset of estimators or parameters. See |
parameters_priority |
Display priority of parameter. If any parameter is missing here, they will be sorted by length. |
return_print |
If TRUE, return a list of ggplot2 object. If FALSE(default), all of the plot will be printed out. |
ylab |
Label of y-axis |
title |
Title of the plot |
pdf_option |
A list of option pass to |
null_hypothesis |
Null hypothesis of the test. For |
benchmark |
Benchmark distribution. For |
... |
unused |
Optional: a list of ggplot2 object
TszKin Julian Chan ctszkin@gmail.com
ezsim
,summary.ezsim
, plot.summary.ezsim
,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | ## Not run:
## example 1
ezsim_basic<-ezsim(
m = 100,
run = TRUE,
display_name = c(mean_hat="hat(mu)",sd_mean_hat="hat(sigma[hat(mu)])"),
parameter_def = createParDef(list(n=seq(20,80,20),mu=c(0,2),sigma=c(1,3,5))),
dgp = function() rnorm(n,mu,sigma),
estimator = function(x) c(mean_hat = mean(x),
sd_mean_hat=sd(x)/sqrt(length(x)-1)),
true_value = function() c(mu, sigma / sqrt(n-1))
)
## Plot an ezsim object
plot(ezsim_basic)
## Subet of the Plot
plot(ezsim_basic,subset=list(estimator="sd_mean_hat",mu=0))
plot(ezsim_basic,subset=list(estimator="mean_hat",sigma=3))
## Parameters Priority of the Plot
plot(ezsim_basic,subset=list(estimator="sd_mean_hat",mu=0),parameters_priority=c("sigma","n"))
plot(ezsim_basic,subset=list(estimator="mean_hat",sigma=c(1,3)),parameters_priority="mu")
## Density Plot
plot(ezsim_basic,'density')
plot(ezsim_basic,"density",subset=list(estimator="mean_hat",sigma=3),parameters_priority="n",
benchmark=dnorm)
plot(ezsim_basic,"density",subset=list(estimator="mean_hat",mu=0),parameters_priority="n" ,
benchmark=dnorm)
## example 2
ezsim_ols<-ezsim(
m = 100,
run = TRUE,
display_name = c(beta_hat='hat(beta)',es='sigma[e]^2',xs='sigma[x]^2',
sd_beta_hat='hat(sigma)[hat(beta)]'),
parameter_def = createParDef(selection=list(xs=c(1,3),beta=c(0,2),n=seq(20,80,20),es=c(1,3))),
dgp = function(){
x<-rnorm(n,0,xs)
e<-rnorm(n,0,es)
y<-beta * x + e
data.frame(y,x)
},
estimator = function(d){
r<-summary(lm(y~x-1,data=d))
out<-r$coef[1,1:2]
names(out)<-c('beta_hat','sd_beta_hat')
out
},
true_value = function() c(beta, es/sqrt(n)/xs)
)
plot(ezsim_ols)
plot(ezsim_ols,subset=list(beta=0))
plot(ezsim_ols,'density')
plot(ezsim_ols,'density',subset=list(es=1,xs=1))
## example 3
ezsim_powerfun<-ezsim(
run = TRUE,
m = 100,
parameter_def = createParDef(selection=list(xs=1,n=50,es=c(1,5),b=seq(-1,1,0.1))),
display_name = c(b='beta',es='sigma[e]^2',xs='sigma[x]^2'),
dgp = function(){
x<-rnorm(n,0,xs)
e<-rnorm(n,0,es)
y<-b * x + e
data.frame(y,x)
},
estimator = function(d){
r<-summary(lm(y~x-1,data=d))
stat<-r$coef[,1]/r$coef[,2]
# test whether b > 0
# level of significance : 5%
out <- stat > c(qnorm(.95), qt(0.95,df=r$df[2]))
names(out)<-c("z-test","t-test")
out
}
)
plot(ezsim_powerfun,'powerfun')
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.