Nothing
#' Normalize BOLD data
#'
#' Center the data across space and/or time, detrend, and scale, in that order.
#' For dual regression, row centering is required and column centering is not
#' recommended. Scaling and detrending depend on the user preference.
#'
#' @param BOLD fMRI numeric data matrix (\eqn{V \times T})
#' @param center_rows,center_cols Center BOLD data across rows (each data
#' location's time series) or columns (each time point's image)? Default:
#' \code{TRUE} for row centering, and \code{FALSE} for column centering.
#' @param scale \code{"global"} (default), \code{"local"}, or \code{"none"}.
#' Global scaling will divide the entire data matrix by the mean image standard
#' deviation (\code{mean(sqrt(rowVars(BOLD)))}). Local scaling will divide each
#' data location's time series by its estimated standard deviation.
#' @param scale_sm_xifti,scale_sm_FWHM Only applies if \code{scale=="local"} and
#' \code{BOLD} represents CIFTI-format data. To smooth the standard deviation
#' estimates used for local scaling, provide a \code{"xifti"} object with data
#' locations in alignment with \code{BOLD}, as well as the smoothing FWHM
#' (default: \code{2}). If no \code{"xifti"} object is provided (default), do
#' not smooth.
#' @param scale_sm_xifti_mask For local scaling with smoothing, the data must
#' be unmasked to be mapped back to the surface. So if the data are masked,
#' provide the mask here.
#' @param TR The temporal resolution of the data, i.e. the time between volumes,
#' in seconds. \code{TR} is required for detrending with \code{hpf}.
#' @param hpf,lpf The frequencies at which to apply temporal filtering to the
#' data during pre-processing, in Hertz. Set either to \code{NULL} to disable.
#' Default: \code{0.01} Hz highpass filter, and \code{NULL} for the lowpass
#' filter (disabled). Filtering is accomplished by nuisance regression of
#' discrete cosine transform (DCT) bases.
#'
#' The highpass filter serves to detrend the data, since low-frequency
#' variance is associated with noise. The lowpass filter removes high-frequency
#' variance, which is also thought to be from non-neuronal noise.
#'
#' Note the \code{TR} argument is required for temporal filtering. If
#' \code{TR} is not provided, \code{hpf} and \code{lpf} will be ignored.
#'
#' @return Normalized BOLD data matrix (\eqn{V \times T})
#'
#' @export
#'
#' @importFrom fMRItools nuisance_regression temporal_filter
#'
norm_BOLD <- function(
BOLD, center_rows=TRUE, center_cols=FALSE,
scale=c("local", "global", "none"), scale_sm_xifti=NULL, scale_sm_FWHM=2,
scale_sm_xifti_mask=NULL,
TR=NULL, hpf=.01, lpf=NULL){
nT <- ncol(BOLD)
nV <- nrow(BOLD)
if (nT > nV) { warning('More time points than voxels. Are you sure?') }
stopifnot(is.logical(center_rows) && length(center_rows)==1)
stopifnot(is.logical(center_cols) && length(center_cols)==1)
if (is.null(scale) || isFALSE(scale)) { scale <- "none" }
if (isTRUE(scale)) {
warning(
"Setting `scale='global'`. Use `'global'` or `'local'` ",
"instead of `TRUE`, which has been deprecated."
)
scale <- "global"
}
scale <- match.arg(scale, c("local", "global", "none"))
if (!is.null(scale_sm_xifti)) {
if (!requireNamespace("ciftiTools", quietly = TRUE)) {
stop("Package \"ciftiTools\" needed to work with CIFTI data. Please install it.", call. = FALSE)
}
stopifnot(ciftiTools::is.xifti(scale_sm_xifti))
if (!is.null(scale_sm_xifti_mask)) {
stopifnot(is.vector(scale_sm_xifti_mask) && is.logical(scale_sm_xifti_mask))
stopifnot(sum(scale_sm_xifti_mask) == nV)
}
}
stopifnot(is.numeric(scale_sm_FWHM) && length(scale_sm_FWHM)==1)
if (length(hpf)==1 && hpf==0) { hpf <- NULL }
if (length(lpf)==1 && lpf==Inf) { lpf <- NULL }
if (is.null(TR)) {
if (!is.null(hpf)) {
if (hpf==.01) {
message("Setting `hpf=NULL` because `TR` was not provided. Either provide `TR` or set `hpf=NULL` to disable this message.")
hpf <- NULL
} else {
stop("Cannot apply `hpf` because `TR` was not provided. Either provide `TR` or set `hpf=NULL`.")
}
}
if (!is.null(lpf)) {
stop("Cannot apply `lpf` because `TR` was not provided. Either provide `TR` or set `lpf=NULL`.")
}
} else {
stopifnot(is_posNum(TR))
stopifnot(is.null(hpf) || is_posNum(hpf))
stopifnot(is.null(lpf) || is_posNum(lpf))
}
# Center.
if (center_rows || center_cols) {
# `BOLD` is transposed twice.
# Center each voxel time series (across time).
if (center_rows) {
BOLD <- t(BOLD - rowMeans(BOLD, na.rm=TRUE))
} else {
BOLD <- t(BOLD)
}
# Center each image (across space).
if (center_cols) {
BOLD <- t(BOLD - rowMeans(BOLD, na.rm=TRUE))
} else {
BOLD <- t(BOLD)
}
}
# Apply the temporal filter.
# [NOTE]: If `center_cols`, columns won't be exactly centered anymore after the filter.
if (!is.null(hpf) || !is.null(lpf)) {
if (!center_rows) { voxMeans <- rowMeans(BOLD, na.rm=TRUE) }
dct <- fMRItools::temporal_filter(
X=ncol(BOLD), TR=TR, hpf=hpf, lpf=lpf, method="DCT", verbose=FALSE
) # [TO DO] carry over verbose arg?
BOLD <- nuisance_regression(BOLD, cbind(1, dct))
if (!center_rows) { BOLD <- BOLD + voxMeans }
}
# Scale.
# Get scale at each location.
if (scale != "none") { sig <- sqrt(rowVars(BOLD, na.rm=TRUE)) }
# Global scaling: take mean scale across all locations, and use that.
if (scale == "global") {
sig <- mean(sig, na.rm=TRUE)
if (sig < 1e-8) {
warning("Estimated scale is near zero. Skipping scaling.")
} else {
# Apply global scaling.
BOLD <- BOLD / sig
}
# Local scaling: use estimate of scale at each location.
} else if (scale == "local") {
# Smooth estimates, if applicable.
if (!is.null(scale_sm_xifti) && (scale_sm_FWHM != 0)) {
# Check `scale_sm_xifti` is valid.
is_masked <- !is.null(scale_sm_xifti_mask)
# Un-mask, if applicable.
if (is_masked) {
sig <- c(unmask_mat(as.matrix(sig), scale_sm_xifti_mask))
nV <- length(sig)
}
if (nV != nrow(scale_sm_xifti)) {
stop("`scale_sm_xifti` not compatible with `BOLD`: different spatial dimensions.")
}
if (!is.null(scale_sm_xifti$meta$cifti$intent) && scale_sm_xifti$meta$cifti$intent == 3007) {
scale_sm_xifti <- ciftiTools::convert_xifti(scale_sm_xifti, "dscalar")
}
# Compute and smooth the SD.
sig <- ciftiTools::newdata_xifti(ciftiTools::select_xifti(scale_sm_xifti, 1), sig)
sig <- ciftiTools::move_to_mwall(sig, NA)
if (!is.null(sig$data$subcort)) {
sub_mask <- !is.na(sig$data$subcort[,1])
sig$data$subcort <- sig$data$subcort[sub_mask,,drop=FALSE]
sig$meta$subcort$labels <- sig$meta$subcort$labels[sub_mask]
sig$meta$subcort$mask[sig$meta$subcort$mask][!sub_mask] <- FALSE
}
sig <- ciftiTools::smooth_xifti(sig, surf_FWHM=scale_sm_FWHM, vol_FWHM=scale_sm_FWHM)
sig <- c(as.matrix(sig))
}
# Apply local scaling.
BOLD <- BOLD / sig
}
BOLD
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.