update_OmegaINV | R Documentation |
\Omega^{-1}
Gibbs sampling for \Omega^{-1}
update_OmegaINV(Lambda, K, g, h)
Lambda |
Factor loadings |
K |
Number of components |
g |
Prior parameter |
h |
Prior parameter |
q\times q
matrix \Omega^{-1}
Panagiotis Papastamoulis
library('fabMix')
# simulate some data
n = 8 # sample size
p = 5 # number of variables
q = 2 # number of factors
K = 2 # true number of clusters
sINV_diag = 1/((1:p)) # diagonal of inverse variance of errors
set.seed(100)
syntheticDataset <- simData(sameLambda=TRUE,K.true = K, n = n, q = q, p = p,
sINV_values = sINV_diag)
SigmaINV <- array(data = 0, dim = c(K,p,p))
for(k in 1:K){
diag(SigmaINV[k,,]) <- 1/diag(syntheticDataset$variance) + rgamma(p, shape=1, rate = 1)
}
# use the real values as input and simulate allocations
update_OmegaINV(Lambda = syntheticDataset$factorLoadings,
K = K, g=0.5, h = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.