Nothing
#' Examine Equalized Odds of a Predictive Model
#'
#' This function evaluates whether a predictive model satisfies the Equalized
#' Odds criterion by comparing both False Negative Rates (FNR) and False
#' Positive Rates (FPR) across two groups defined by a binary protected
#' attribute. It reports the rate for each group, their differences, ratios, and
#' bootstrap-based confidence regions. A Bonferroni-corrected union test is used
#' to test whether the model violates the Equalized Odds criterion.
#'
#' @param data A data frame containing the true binary outcomes, predicted
#' probabilities, and binary protected attribute.
#' @param outcome A string specifying the name of the binary outcome variable in
#' \code{data}.
#' @param group Name of the binary protected attribute. Must consist of only two groups.
#' @param probs A string specifying the name of the variable containing
#' predicted probabilities or risk scores.
#' @param cutoff A numeric value used to threshold predicted probabilities into
#' binary predictions; defaults to 0.5.
#' @param confint Whether to compute 95% confidence interval, default is TRUE.
#' @param bootstraps An integer specifying the number of bootstrap resamples for
#' constructing confidence intervals; vdefaults to 2500.
#' @param alpha Significance level for the (1 - \code{alpha}) confidence
#' interval; defaults to 0.05.
#' @param digits Number of decimal places to round numeric results; defaults to
#' 2.
#' @param message Logical; if TRUE (default), prints a textual summary of the
#' fairness evaluation. Only works if `confint` is TRUE.
#' @return A data frame summarizing group disparities in both FNR and FPR with
#' the following columns:
#' \itemize{
#' \item \code{Metric}: The reported metrics ("FNR; FPR").
#' \item \code{Group1}: Estimated FNR and FPR for the first group.
#' \item \code{Group2}: Estimated FNR and FPR for the second group.
#' \item \code{Difference}: Differences in FNR and FPR, computed as Group1 -
#' Group2.
#' \item \code{95\% CR}: Bonferroni-adjusted confidence regions for the
#' differences.
#' \item \code{Ratio}: Ratios in FNR and FPR, computed as Group1 / Group2.
#' \item \code{95\% CR}: Bonferroni-adjusted confidence regions for the ratios.
#' }
#'
#' @importFrom stats qnorm sd
#'
#' @examples
#' \donttest{
#' library(fairmetrics)
#' library(dplyr)
#' library(magrittr)
#' library(randomForest)
#' data("mimic_preprocessed")
#' set.seed(123)
#' train_data <- mimic_preprocessed %>%
#' dplyr::filter(dplyr::row_number() <= 700)
#' # Fit a random forest model
#' rf_model <- randomForest::randomForest(factor(day_28_flg) ~ .,
#' data = train_data, ntree = 1000
#' )
#' # Test the model on the remaining data
#' test_data <- mimic_preprocessed %>%
#' dplyr::mutate(gender = ifelse(gender_num == 1, "Male", "Female")) %>%
#' dplyr::filter(dplyr::row_number() > 700)
#'
#' test_data$pred <- predict(rf_model, newdata = test_data, type = "prob")[, 2]
#'
#' # Fairness evaluation
#' # We will use sex as the protected attribute and day_28_flg as the outcome.
#' # We choose threshold = 0.41 so that the overall FPR is around 5%.
#'
#' # Evaluate Equalized Odds
#' eval_eq_odds(
#' data = test_data,
#' outcome = "day_28_flg",
#' group = "gender",
#' probs = "pred",
#' cutoff = 0.41
#' )
#' }
#' @export
eval_eq_odds <- function(data, outcome, group, probs, cutoff = 0.5, confint = TRUE,
bootstraps = 2500, alpha = 0.05, digits = 2,
message = TRUE) {
# Check if outcome and groups are binary
unique_values <- unique(data[[outcome]])
groups <- unique(data[[group]])
if (!(length(unique_values) == 2 && all(unique_values %in% c(0, 1)))) {
stop("`outcome` must be binary (containing only 0 and 1).")
}
if (!(length(groups) == 2)) {
stop("`group` argument must only consist of two groups (i.e. `length(unique(data[[group]])) == 2`")
}
fnr <- 1 - get_tpr(
data = data, outcome = outcome, group = group, probs = probs,
cutoff = cutoff, digits = digits
)
fpr <- get_fpr(
data = data, outcome = outcome, group = group, probs = probs,
cutoff = cutoff, digits = digits
)
fnr_diff <- fnr[[1]] - fnr[[2]]
fpr_diff <- fpr[[1]] - fpr[[2]]
fnr_ratio <- fnr[[1]] / fnr[[2]]
fpr_ratio <- fpr[[1]] / fpr[[2]]
if(confint){
# Calculate confidence interval
se <- replicate(bootstraps, {
indices1 <- sample(which(data[[group]] == unique(data[[group]])[1]),
replace = TRUE
)
indices2 <- sample(which(data[[group]] == unique(data[[group]])[2]),
replace = TRUE
)
boot_data <- rbind(data[indices1, ], data[indices2, ])
boot_fnr <- 1 - get_tpr(
data = boot_data, outcome = outcome, group = group, probs = probs,
cutoff = cutoff, digits = digits
)
boot_fpr <- get_fpr(
data = boot_data, outcome = outcome, group = group, probs = probs,
cutoff = cutoff, digits = digits
)
c(
boot_fnr[[1]] - boot_fnr[[2]], boot_fpr[[1]] - boot_fpr[[2]],
log(boot_fnr[[1]] / boot_fnr[[2]]), log(boot_fpr[[1]] / boot_fpr[[2]])
)
})
# Calculate confidence intervals
fnr_lower <- round(fnr_diff - qnorm(1 - alpha / 4) * sd(se[1, ],na.rm=TRUE), digits)
fnr_upper <- round(fnr_diff + qnorm(1 - alpha / 4) * sd(se[1, ],na.rm=TRUE), digits)
fpr_lower <- round(fpr_diff - qnorm(1 - alpha / 4) * sd(se[2, ],na.rm=TRUE), digits)
fpr_upper <- round(fpr_diff + qnorm(1 - alpha / 4) * sd(se[2, ],na.rm=TRUE), digits)
fnr_ratio_lower <- round(exp(log(fnr_ratio) - qnorm(1 - alpha / 4) *
sd(se[3, ],na.rm=TRUE)), digits)
fnr_ratio_upper <- round(exp(log(fnr_ratio) + qnorm(1 - alpha / 4) *
sd(se[3, ],na.rm=TRUE)), digits)
fpr_ratio_lower <- round(exp(log(fpr_ratio) - qnorm(1 - alpha / 4) *
sd(se[4, ],na.rm=TRUE)), digits)
fpr_ratio_upper <- round(exp(log(fpr_ratio) + qnorm(1 - alpha / 4) *
sd(se[4, ],na.rm=TRUE)), digits)
# Structure the results as a dataframe
results_df <- data.frame(
Metric = c("FNR; FPR"),
Group1 = paste0(fnr[[1]], "; ", fpr[[1]]),
Group2 = paste0(fnr[[2]], "; ", fpr[[2]]),
Difference = paste0(fnr_diff, "; ", fpr_diff),
CI =
paste0(
"[", fnr_lower, ", ", fnr_upper, "]", "; ",
"[", fpr_lower, ", ", fpr_upper, "]"
),
Ratio = paste0(round(fnr_ratio, digits), "; ", round(fpr_ratio, digits)),
Ratio_CI =
paste0(
"[", fnr_ratio_lower, ", ", fnr_ratio_upper, "]", "; ",
"[", fpr_ratio_lower, ", ", fpr_ratio_upper, "]"
)
)
colnames(results_df) <- c(
"Metric",
paste0("Group ", sort(unique(data[[group]]))[[1]]),
paste0("Group ", sort(unique(data[[group]]))[[2]]),
"Difference",
paste0((1-alpha)*100, "% Diff CI"),
"Ratio",
paste0((1-alpha)*100, "% Ratio CI")
)
# Print summary message if desired
if (message) {
if (any(fnr_lower > 0) || any(fnr_upper < 0) || any(fpr_lower > 0) ||
any(fpr_upper < 0)) {
cat("There is evidence that model does not satisfy equalized odds.\n")
} else {
cat("There is not enough evidence that the model does not satisfy the
equalized odds criterion.\n")
}
}
}else{
# Structure the results as a dataframe
results_df <- data.frame(
Metric = c("FNR; FPR"),
Group1 = paste0(fnr[[1]], "; ", fpr[[1]]),
Group2 = paste0(fnr[[2]], "; ", fpr[[2]]),
Difference = paste0(fnr_diff, "; ", fpr_diff),
Ratio = paste0(round(fnr_ratio, digits), "; ", round(fpr_ratio, digits))
)
colnames(results_df) <- c(
"Metric",
paste0("Group ", sort(unique(data[[group]]))[[1]]),
paste0("Group ", sort(unique(data[[group]]))[[2]]),
"Difference", "Ratio"
)
}
return(results_df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.