Nothing
#' @include FamiliarS4Generics.R
#' @include FamiliarS4Classes.R
NULL
# plot_decision_curve (generic) ------------------------------------------------
#' @title Plot decision curves.
#'
#' @description This method creates decision curves based on data in a
#' familiarCollection object.
#'
#' @param dir_path (*optional*) Path to the directory where created decision
#' curve plots are saved to. Output is saved in the `decision_curve_analysis`
#' subdirectory. If `NULL`, figures are written to the folder, but are
#' returned instead.
#' @param discrete_palette (*optional*) Palette to use to color the different
#' plot elements in case a value was provided to the `color_by` argument.
#'
#' @inheritParams as_familiar_collection
#' @inheritParams plot_univariate_importance
#' @inheritParams .check_input_plot_args
#' @inheritParams .check_plot_splitting_variables
#' @inheritDotParams as_familiar_collection -object
#' @inheritDotParams ggplot2::ggsave -height -width -units -path -filename -plot
#' @inheritDotParams extract_decision_curve_data -object
#'
#' @details This function generates plots for decision curves.
#'
#' Available splitting variables are: `fs_method`, `learner`, `data_set` and
#' `positive_class` (categorical outcomes) or `evaluation_time` (survival
#' outcomes). By default, the data is split by `fs_method` and `learner`, with
#' faceting by `data_set` and colouring by `positive_class` or
#' `evaluation_time`.
#'
#' Available palettes for `discrete_palette` are those listed by
#' `grDevices::palette.pals()` (requires R >= 4.0.0), `grDevices::hcl.pals()`
#' (requires R >= 3.6.0) and `rainbow`, `heat.colors`, `terrain.colors`,
#' `topo.colors` and `cm.colors`, which correspond to the palettes of the same
#' name in `grDevices`. If not specified, a default palette based on palettes
#' in Tableau are used. You may also specify your own palette by using colour
#' names listed by `grDevices::colors()` or through hexadecimal RGB strings.
#'
#' Bootstrap confidence intervals of the decision curve (if present) can be
#' shown using various styles set by `conf_int_style`:
#'
#' * `ribbon` (default): confidence intervals are shown as a ribbon with an
#' opacity of `conf_int_alpha` around the point estimate of the decision
#' curve.
#'
#' * `step` (default): confidence intervals are shown as a step function around
#' the point estimate of the decision curve.
#'
#' * `none`: confidence intervals are not shown. The point estimate of the
#' decision curve is shown as usual.
#'
#' Labelling methods such as `set_fs_method_names` or `set_data_set_names` can
#' be applied to the `familiarCollection` object to update labels, and order
#' the output in the figure.
#'
#' @return `NULL` or list of plot objects, if `dir_path` is `NULL`.
#' @references 1. Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel
#' method for evaluating prediction models. Med. Decis. Making 26, 565–574
#' (2006).
#'
#' 1. Vickers, A. J., Cronin, A. M., Elkin, E. B. & Gonen, M. Extensions to
#' decision curve analysis, a novel method for evaluating diagnostic tests,
#' prediction models and molecular markers. BMC Med. Inform. Decis. Mak. 8, 53
#' (2008).
#'
#' 1. Vickers, A. J., van Calster, B. & Steyerberg, E. W. A simple,
#' step-by-step guide to interpreting decision curve analysis. Diagn Progn Res
#' 3, 18 (2019).
#' @exportMethod plot_decision_curve
#' @md
#' @rdname plot_decision_curve-methods
setGeneric(
"plot_decision_curve",
function(
object,
draw = FALSE,
dir_path = NULL,
split_by = NULL,
color_by = NULL,
facet_by = NULL,
facet_wrap_cols = NULL,
ggtheme = NULL,
discrete_palette = NULL,
x_label = waiver(),
y_label = waiver(),
legend_label = waiver(),
plot_title = waiver(),
plot_sub_title = waiver(),
caption = NULL,
x_range = NULL,
x_n_breaks = 5,
x_breaks = NULL,
y_range = NULL,
y_n_breaks = 5,
y_breaks = NULL,
conf_int_style = c("ribbon", "step", "none"),
conf_int_alpha = 0.4,
width = waiver(),
height = waiver(),
units = waiver(),
export_collection = FALSE,
...) {
standardGeneric("plot_decision_curve")
}
)
# plot_decision_curve (general) ------------------------------------------------
#' @rdname plot_decision_curve-methods
setMethod(
"plot_decision_curve",
signature(object = "ANY"),
function(
object,
draw = FALSE,
dir_path = NULL,
split_by = NULL,
color_by = NULL,
facet_by = NULL,
facet_wrap_cols = NULL,
ggtheme = NULL,
discrete_palette = NULL,
x_label = waiver(),
y_label = waiver(),
legend_label = waiver(),
plot_title = waiver(),
plot_sub_title = waiver(),
caption = NULL,
x_range = NULL,
x_n_breaks = 5,
x_breaks = NULL,
y_range = NULL,
y_n_breaks = 5,
y_breaks = NULL,
conf_int_style = c("ribbon", "step", "none"),
conf_int_alpha = 0.4,
width = waiver(),
height = waiver(),
units = waiver(),
export_collection = FALSE,
...) {
# Attempt conversion to familiarCollection object.
object <- do.call(
as_familiar_collection,
args = c(
list(
"object" = object,
"data_element" = "decision_curve_analyis"),
list(...)))
return(do.call(
plot_decision_curve,
args = list(
"object" = object,
"draw" = draw,
"dir_path" = dir_path,
"split_by" = split_by,
"color_by" = color_by,
"facet_by" = facet_by,
"facet_wrap_cols" = facet_wrap_cols,
"ggtheme" = ggtheme,
"discrete_palette" = discrete_palette,
"x_label" = x_label,
"y_label" = y_label,
"legend_label" = legend_label,
"plot_title" = plot_title,
"plot_sub_title" = plot_sub_title,
"caption" = caption,
"x_range" = x_range,
"x_n_breaks" = x_n_breaks,
"x_breaks" = x_breaks,
"y_range" = y_range,
"y_n_breaks" = y_n_breaks,
"y_breaks" = y_breaks,
"conf_int_style" = conf_int_style,
"conf_int_alpha" = conf_int_alpha,
"width" = width,
"height" = height,
"units" = units,
"export_collection" = export_collection)))
}
)
# plot_decision_curve (collection) ---------------------------------------------
#' @rdname plot_decision_curve-methods
setMethod(
"plot_decision_curve",
signature(object = "familiarCollection"),
function(
object,
draw = FALSE,
dir_path = NULL,
split_by = NULL,
color_by = NULL,
facet_by = NULL,
facet_wrap_cols = NULL,
ggtheme = NULL,
discrete_palette = NULL,
x_label = waiver(),
y_label = waiver(),
legend_label = waiver(),
plot_title = waiver(),
plot_sub_title = waiver(),
caption = NULL,
x_range = NULL,
x_n_breaks = 5,
x_breaks = NULL,
y_range = NULL,
y_n_breaks = 5,
y_breaks = NULL,
conf_int_style = c("ribbon", "step", "none"),
conf_int_alpha = 0.4,
width = waiver(),
height = waiver(),
units = waiver(),
export_collection = FALSE,
...) {
# Suppress NOTES due to non-standard evaluation in data.table
curve_type <- ci_low <- ci_up <- net_benefit <- NULL
# Make sure the collection object is updated.
object <- update_object(object = object)
# Get input data.
x <- export_decision_curve_analysis_data(
object = object,
aggregate_results = TRUE)
# Check that the data are not empty.
if (is_empty(x)) return(NULL)
# Check that the data are not evaluated at the model level.
if (all(sapply(x, function(x) (x@detail_level == "model")))) {
..warning_no_comparison_between_models()
return(NULL)
}
# Obtain data element from list.
if (is.list(x)) {
if (is_empty(x)) return(NULL)
if (length(x) > 1) {
..error_reached_unreachable_code(
"plot_decision_curve: list of data elements contains unmerged elements.")
}
# Get x directly.
x <- x[[1]]
}
# Check that the data are not empty.
if (is_empty(x)) return(NULL)
# Check package requirements for plotting.
if (!require_package(
x = ..required_plotting_packages(extended = FALSE),
purpose = "to plot decision curves",
message_type = "warning")) {
return(NULL)
}
# Check input arguments ----------------------------------------------------
# ggtheme
ggtheme <- .check_ggtheme(ggtheme)
# x_label
if (is.waive(x_label)) x_label <- "threshold probability"
# y_label
if (is.waive(y_label)) y_label <- "net benefit"
# x_range
if (is.null(x_range)) x_range <- c(0.0, 1.0)
# x_breaks
if (is.null(x_breaks)) {
.check_input_plot_args(x_n_breaks = x_n_breaks)
# Create breaks
x_breaks <- labeling::extended(
m = x_n_breaks,
dmin = x_range[1],
dmax = x_range[2],
only.loose = TRUE)
}
# conf_int_style
if (length(conf_int_style) > 1) {
conf_int_style <- head(conf_int_style, n = 1)
}
# Set the style of the confidence interval to none, in case no confidence
# interval data is present.
if (!x@estimation_type %in% c("bci", "bootstrap_confidence_interval")) {
conf_int_style <- "none"
}
# y_range
if (is.null(y_range)) {
if (conf_int_style != "none") {
# Base the y-range on the confidence intervals.
y_range <- c(
min(x@data[curve_type == "model" & is.finite(ci_low)]$ci_low),
max(x@data[curve_type == "model" & is.finite(ci_up)]$ci_up))
} else {
# Base the y-range on the range of the benefit.
y_range <- c(
min(c(0.0, min(x@data[curve_type == "model" & is.finite(net_benefit)]$net_benefit))),
max(c(0.0, max(x@data[curve_type == "model" & is.finite(net_benefit)]$net_benefit))))
}
}
# y_breaks
if (is.null(y_breaks)) {
.check_input_plot_args(y_n_breaks = y_n_breaks)
# Create breaks
y_breaks <- labeling::extended(
m = y_n_breaks,
dmin = y_range[1],
dmax = y_range[2],
only.loose = TRUE)
# Adapt the y-range.
y_range <- c(
head(y_breaks, n = 1),
tail(y_breaks, n = 1))
}
if (object@outcome_type %in% c("binomial", "multinomial")) {
split_variable <- "positive_class"
} else if (object@outcome_type %in% c("survival")) {
split_variable <- "evaluation_time"
} else {
..error_outcome_type_not_implemented(object@outcome_type)
}
# Splitting variables
if (is.null(split_by) && is.null(facet_by) && is.null(color_by)) {
# Determine the number of learners and feature_selection methods.
n_learner <- nlevels(x@data$learner)
n_fs_method <- nlevels(x@data$fs_method)
if (object@outcome_type %in% c("multinomial")) {
n_class_or_time <- nlevels(x@data$positive_class)
} else if (object@outcome_type %in% c("binomial")) {
n_class_or_time <- 1L
} else if (object@outcome_type %in% c("survival")) {
n_class_or_time <- nlevels(x@data$evaluation_time)
} else {
..error_outcome_type_not_implemented(object@outcome_type)
}
if (n_learner > 1 && n_fs_method > 1) {
# Split by learner and feature selection method.
split_by <- c("fs_method", "learner")
if (n_class_or_time > 1) {
color_by <- split_variable
facet_by <- "data_set"
} else {
color_by <- c("data_set", split_variable)
}
} else if (n_learner > 1) {
# Implying n_fs_method == 1
if (n_class_or_time > 1) {
split_by <- c("fs_method", "learner")
color_by <- split_variable
facet_by <- "data_set"
} else {
split_by <- c("fs_method")
color_by <- c("learner")
facet_by <- c("data_set", split_variable)
}
} else if (n_fs_method > 1) {
# Implying n_learner == 1
if (n_class_or_time > 1) {
split_by <- c("fs_method", "learner")
color_by <- split_variable
facet_by <- "data_set"
} else {
split_by <- "learner"
color_by <- "fs_method"
facet_by <- c("data_set", split_variable)
}
} else {
# Implying n_learner == n_fs_method == 1
split_by <- c("fs_method", "learner")
if (n_class_or_time > 1) {
color_by <- split_variable
facet_by <- "data_set"
} else {
color_by <- c("data_set", split_variable)
}
}
}
# Check splitting variables and generate sanitised output
split_var_list <- .check_plot_splitting_variables(
x = x@data,
split_by = split_by,
color_by = color_by,
facet_by = facet_by,
available = c("fs_method", "learner", "data_set", split_variable))
# Update splitting variables
split_by <- split_var_list$split_by
color_by <- split_var_list$color_by
facet_by <- split_var_list$facet_by
# Create a legend label
legend_label <- .create_plot_legend_title(
user_label = legend_label,
color_by = color_by)
# Check input arguments for validity.
.check_input_plot_args(
x_range = x_range,
y_range = y_range,
x_breaks = x_breaks,
y_breaks = y_breaks,
conf_int_alpha = conf_int_alpha,
conf_int_style = conf_int_style,
facet_wrap_cols = facet_wrap_cols,
x_label = x_label,
y_label = y_label,
legend_label = legend_label,
plot_title = plot_title,
plot_sub_title = plot_sub_title,
caption = caption)
# Create plots -------------------------------------------------------------
# Determine if subtitle should be generated.
autogenerate_plot_subtitle <- is.waive(plot_sub_title)
# Split data
if (!is.null(split_by)) {
x_split <- split(x@data, by = split_by)
} else {
x_split <- list("null.name" = x@data)
}
# Store plots to list in case dir_path is absent.
if (is.null(dir_path)) plot_list <- list()
# Iterate over splits
for (ii in names(x_split)) {
# Skip empty datasets
if (is_empty(x_split[[ii]])) next
if (is.waive(plot_title)) plot_title <- "Decision curve"
# Declare subtitle components.
additional_subtitle <- NULL
# Add evaluation time as subtitle component if it is not used
# otherwise.
if (!"evaluation_time" %in% c(split_by, color_by, facet_by) &&
object@outcome_type %in% c("survival")) {
additional_subtitle <- c(
additional_subtitle,
.add_time_to_plot_subtitle(x_split[[ii]]$evaluation_time[1]))
}
if (autogenerate_plot_subtitle) {
plot_sub_title <- .create_plot_subtitle(
split_by = split_by,
additional = additional_subtitle,
x = x_split[[ii]])
}
# Generate plot
p <- .plot_decision_curve_plot(
x = x_split[[ii]],
color_by = color_by,
facet_by = facet_by,
facet_wrap_cols = facet_wrap_cols,
ggtheme = ggtheme,
discrete_palette = discrete_palette,
x_label = x_label,
y_label = y_label,
legend_label = legend_label,
plot_title = plot_title,
plot_sub_title = plot_sub_title,
caption = caption,
x_range = x_range,
x_breaks = x_breaks,
y_range = y_range,
y_breaks = y_breaks,
conf_int_style = conf_int_style,
conf_int_alpha = conf_int_alpha)
# Check empty output
if (is.null(p)) next
# Draw figure.
if (draw) .draw_plot(plot_or_grob = p)
# Save and export
if (!is.null(dir_path)) {
# Obtain decent default values for the plot.
def_plot_dims <- .determine_decision_curve_plot_dimensions(
x = x_split[[ii]],
facet_by = facet_by,
facet_wrap_cols = facet_wrap_cols)
# Save to file.
do.call(
.save_plot_to_file,
args = c(
list(
"plot_or_grob" = p,
"object" = object,
"dir_path" = dir_path,
"type" = "decision_curve_analysis",
"subtype" = "decision_curve",
"x" = x_split[[ii]],
"split_by" = split_by,
"height" = ifelse(is.waive(height), def_plot_dims[1], height),
"width" = ifelse(is.waive(width), def_plot_dims[2], width),
"units" = ifelse(is.waive(units), "cm", units)),
list(...)))
} else {
# Store as list for export.
plot_list <- c(plot_list, list(p))
}
}
# Generate output
return(.get_plot_results(
dir_path = dir_path,
plot_list = plot_list,
export_collection = export_collection,
object = object))
}
)
.plot_decision_curve_plot <- function(
x,
color_by,
facet_by,
facet_wrap_cols,
ggtheme,
discrete_palette,
x_label,
y_label,
legend_label,
plot_title,
plot_sub_title,
caption,
x_range,
x_breaks,
y_range,
y_breaks,
conf_int_style,
conf_int_alpha) {
# Suppress NOTES due to non-standard evaluation in data.table
curve_type <- NULL
# Generate a guide table.
guide_list <- .create_plot_guide_table(
x = x, color_by = color_by,
discrete_palette = discrete_palette)
# Extract data
x <- guide_list$data
# Create basic plot
p <- ggplot2::ggplot(
data = x[curve_type == "model"],
mapping = ggplot2::aes(
x = !!sym("threshold_probability"),
y = !!sym("net_benefit")))
# Add theme
p <- p + ggtheme
# Add decision curve, the curve for intervention for all, and the curve for no
# intervention.
if (is.null(color_by)) {
# Model-based curve without colour-based splitting.
p <- p + ggplot2::geom_line()
# Intervention for all.
p <- p + ggplot2::geom_line(
data = x[curve_type == "intervention_all"],
mapping = ggplot2::aes(
x = !!sym("threshold_probability"),
y = !!sym("net_benefit")))
# Intervention for none.
p <- p + ggplot2::geom_hline(yintercept = 0.0)
} else {
# Model-based curve with colour-based splitting.
p <- p + ggplot2::geom_line(mapping = ggplot2::aes(colour = !!sym("color_breaks")))
# Intervention for all.
# Intervention for all.
p <- p + ggplot2::geom_line(
data = x[curve_type == "intervention_all"],
mapping = ggplot2::aes(
x = !!sym("threshold_probability"),
y = !!sym("net_benefit"),
colour = !!sym("color_breaks")))
# Intervention for none.
p <- p + ggplot2::geom_hline(yintercept = 0.0)
# Extract guidetable for color
g_color <- guide_list$guide_color
# Set colour and fill (fill may be unused)
p <- p + ggplot2::scale_colour_manual(
name = legend_label$guide_color,
values = g_color$color_values,
breaks = g_color$color_breaks,
drop = FALSE)
p <- p + ggplot2::scale_fill_manual(
name = legend_label$guide_color,
values = g_color$color_values,
breaks = g_color$color_breaks,
drop = FALSE)
}
# Plot confidence intervals
if (conf_int_style[1] != "none") {
if (conf_int_style[1] == "step") {
if (is.null(color_by)) {
p <- p + ggplot2::geom_step(
mapping = ggplot2::aes(y = !!sym("ci_low")),
linetype = "dashed")
p <- p + ggplot2::geom_step(
mapping = ggplot2::aes(y = !!sym("ci_up")),
linetype = "dashed")
} else {
p <- p + ggplot2::geom_step(
mapping = ggplot2::aes(
y = !!sym("ci_low"),
colour = !!sym("color_breaks")),
linetype = "dashed")
p <- p + ggplot2::geom_step(
mapping = ggplot2::aes(
y = !!sym("ci_up"),
colour = !!sym("color_breaks")),
linetype = "dashed")
}
# Remove linetype from the legend.
p <- p + ggplot2::scale_linetype(guide = FALSE)
} else if (conf_int_style[1] == "ribbon") {
if (is.null(color_by)) {
p <- p + ggplot2::geom_ribbon(
mapping = ggplot2::aes(
ymin = !!sym("ci_low"),
ymax = !!sym("ci_up")),
alpha = conf_int_alpha)
} else {
p <- p + ggplot2::geom_ribbon(
mapping = ggplot2::aes(
ymin = !!sym("ci_low"),
ymax = !!sym("ci_up"),
fill = !!sym("color_breaks")),
alpha = conf_int_alpha)
}
}
}
# Update x and y scales
p <- p + ggplot2::scale_x_continuous(breaks = x_breaks)
p <- p + ggplot2::scale_y_continuous(breaks = y_breaks)
# Labels
p <- p + ggplot2::labs(
x = x_label,
y = y_label,
title = plot_title,
subtitle = plot_sub_title,
caption = caption)
# Determine how things are faceted.
facet_by_list <- .parse_plot_facet_by(
x = x,
facet_by = facet_by,
facet_wrap_cols = facet_wrap_cols)
if (!is.null(facet_by)) {
if (is.null(facet_wrap_cols)) {
# Use a grid
p <- p + ggplot2::facet_grid(
rows = facet_by_list$facet_rows,
cols = facet_by_list$facet_cols,
labeller = "label_context",
drop = TRUE)
} else {
p <- p + ggplot2::facet_wrap(
facets = facet_by_list$facet_by,
labeller = "label_context",
drop = TRUE)
}
}
# Prevent clipping of confidence intervals.
p <- p + ggplot2::coord_cartesian(
xlim = x_range,
ylim = y_range)
return(p)
}
.determine_decision_curve_plot_dimensions <- function(
x,
facet_by,
facet_wrap_cols) {
# Obtain faceting dimensions
plot_dims <- .get_plot_layout_dims(
x = x,
facet_by = facet_by,
facet_wrap_cols = facet_wrap_cols)
# Set default height and width for each subplot (in cm).
default_width <- 6
default_height <- 4
# Set overall plot height, but limit to small-margin A4 (27.7 cm)
height <- min(c(2 + plot_dims[1] * default_height, 27.7))
# Set overall plot width, but limit to small-margin A4 (19 cm)
width <- min(c(2 + plot_dims[2] * default_width, 19))
return(c(height, width))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.