Nothing
# First test if all selectable learners are also available
familiar:::test_all_learners_available(
learners = familiar:::.get_available_svm_c_learners(show_general = TRUE))
familiar:::test_all_learners_available(
learners = familiar:::.get_available_svm_nu_learners(show_general = TRUE))
familiar:::test_all_learners_available(
learners = familiar:::.get_available_svm_eps_learners(show_general = TRUE))
# Don't perform any further tests on CRAN due to time of running the complete
# test.
testthat::skip_on_cran()
testthat::skip_on_ci()
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_svm_c_learners(show_general = FALSE),
hyperparameter_list = list(
"binomial" = list(
"c" = -1.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"multinomial" = list(
"c" = -1.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_svm_nu_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"continuous" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"binomial" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"multinomial" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
familiar:::test_all_learners_train_predict_vimp(
learners = familiar:::.get_available_svm_eps_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"continuous" = list(
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
# Parallel tests.
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_svm_c_learners(show_general = FALSE),
hyperparameter_list = list(
"binomial" = list(
"c" = -1.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"multinomial" = list(
"c" = -1.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_svm_nu_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"continuous" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"binomial" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"multinomial" = list(
"c" = -1.0,
"epsilon" = 0.0,
"nu" = -4.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
familiar:::test_all_learners_parallel_train_predict_vimp(
learners = familiar:::.get_available_svm_eps_learners(show_general = FALSE),
hyperparameter_list = list(
"count" = list(
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
),
"continuous" = list(
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.1,
"degree" = 2.0,
"offset" = 0.0
)),
has_vimp = FALSE
)
# Count outcome tests-----------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("count")
wide_data <- familiar:::test_create_wide_data("count")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.0),
learner = "svm_eps_radial")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 0.0),
learner = "svm_eps_radial")
testthat::test_that("SVM model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("SVM model has no variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table is empty.
testthat::expect_equal(is_empty(vimp_table), TRUE)
})
testthat::test_that("SVM model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Continuous outcome tests------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("continuous")
wide_data <- familiar:::test_create_wide_data("continuous")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 1.0),
learner = "svm_eps_radial")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = wide_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"epsilon" = 0.0,
"gamma" = 1.0),
learner = "svm_eps_radial")
testthat::test_that("SVM model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("SVM model has no variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table is empty.
testthat::expect_equal(is_empty(vimp_table), TRUE)
})
testthat::test_that("SVM model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Binomial tests----------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("binomial")
wide_data <- familiar:::test_create_wide_data("binomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"gamma" = 1.0),
learner = "svm_c_radial")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"gamma" = 1.0),
learner = "svm_c_radial")
testthat::test_that("SVM model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("SVM model has no variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table is empty.
testthat::expect_equal(is_empty(vimp_table), TRUE)
})
testthat::test_that("SVM model can train on wide data", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is absent.
testthat::expect_true(is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
# Multinomial tests-------------------------------------------------------------
# Create test data sets.
good_data <- familiar:::test_create_good_data("multinomial")
wide_data <- familiar:::test_create_wide_data("multinomial")
# Train the model using the good dataset.
good_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"gamma" = 1.0),
learner = "svm_c_radial")
# Train the model using wide data.
wide_model <- familiar:::test_train(
data = good_data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list(
"sign_size" = familiar:::get_n_features(good_data),
"c" = -1.0,
"gamma" = 1.0),
learner = "svm_c_radial")
testthat::test_that("SVM model trained correctly", {
# Model trained
testthat::expect_equal(familiar:::model_is_trained(good_model), TRUE)
# Check that no deprecation warnings are given.
familiar:::test_not_deprecated(good_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(good_model@messages$error, NULL)
})
testthat::test_that("SVM model has no variable importance", {
# Extract the variable importance table.
vimp_table <- familiar:::get_vimp_table(good_model)
# Expect that the vimp table is empty.
testthat::expect_equal(is_empty(vimp_table), TRUE)
})
testthat::test_that("SVM model can train on wide data", {
# Model cannot be trained.
testthat::expect_equal(familiar:::model_is_trained(wide_model), TRUE)
# Variable importance table is empty.
testthat::expect_true(familiar:::is_empty(familiar:::get_vimp_table(wide_model)))
# Valid predictions can be made.
testthat::expect_true(familiar:::any_predictions_valid(
familiar:::.predict(wide_model, wide_data),
outcome_type = wide_data@outcome_type))
# Test that no deprecation warnings are given.
familiar:::test_not_deprecated(wide_model@messages$warning)
# Test that no errors appear.
testthat::expect_equal(wide_model@messages$error, NULL)
})
testthat::skip("Skip hyperparameter optimisation, unless manual.")
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_svm_c_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE
)
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_svm_nu_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE
)
familiar:::test_hyperparameter_optimisation(
learners = familiar:::.get_available_svm_eps_learners(show_general = TRUE),
debug = FALSE,
parallel = FALSE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.