Nothing
# Don't perform any further tests on CRAN due to time of running the complete
# test.
testthat::skip_on_cran()
testthat::skip_on_ci()
# Survival data with multiple instances ----------------------------------------
# Create a dataset using the good dataset.
data <- familiar:::test_create_good_data("survival")
# Train a simple linear GLM using the good dataset.
fam_model <- familiar:::test_train(
data = data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(data)),
learner = "cox",
create_novelty_detector = TRUE
)
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_good_data("survival", to_data_object = FALSE))
# Survival probability.
predictions_surv <- familiar::predict(
object = fam_model,
newdata = data,
type = "survival_probability")
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_good_data("survival", to_data_object = FALSE))
# Risk stratification.
predictions_risk <- familiar::predict(
object = fam_model,
newdata = data,
type = "risk_stratification")
testthat::test_that("Survival models can predict using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_surv), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_risk), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "survival"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "survival"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_surv, "survival"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_risk, "survival"), TRUE)
})
# Survival data with one instance ----------------------------------------------
# Create one-sample dataset.
data <- familiar:::test_create_one_sample_data("survival")
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_one_sample_data(
"survival", to_data_object = FALSE))
# Survival probability.
predictions_surv <- familiar::predict(
object = fam_model,
newdata = data,
type = "survival_probability")
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_one_sample_data(
"survival", to_data_object = FALSE))
# Risk stratification.
predictions_risk <- familiar::predict(
object = fam_model,
newdata = data,
type = "risk_stratification")
testthat::test_that("Surival models can predict single instances using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_surv), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_risk), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "survival"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "survival"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_surv, "survival"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_risk, "survival"), TRUE)
})
# Binomial data with multiple instances ----------------------------------------
# Create a dataset using the good dataset.
data <- familiar:::test_create_good_data("binomial")
# Train a simple linear GLM using the good dataset.
fam_model <- familiar:::test_train(
data = data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(data)),
learner = "glm_logistic",
create_novelty_detector = TRUE
)
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_good_data(
"binomial", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_good_data(
"binomial", to_data_object = FALSE))
testthat::test_that("Binomial models can predict using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "binomial"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "binomial"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Binomial data with one instance ----------------------------------------------
# Create one-sample dataset.
data <- familiar:::test_create_one_sample_data("binomial")
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_one_sample_data(
"binomial", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_one_sample_data(
"binomial", to_data_object = FALSE))
testthat::test_that("Binomial models can predict single instances using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "binomial"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "binomial"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Multinomial data with multiple instances -------------------------------------
# Create a dataset using the good dataset.
data <- familiar:::test_create_good_data("multinomial")
# Train a simple linear GLM using the good dataset.
fam_model <- familiar:::test_train(
data = data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(data)),
learner = "lasso_multinomial",
create_novelty_detector = TRUE
)
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_good_data(
"multinomial", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_good_data(
"multinomial", to_data_object = FALSE))
testthat::test_that("Multinomial models can predict using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "multinomial"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "multinomial"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Multinomial data with one instance -------------------------------------------
# Create one-sample dataset.
data <- familiar:::test_create_one_sample_data("multinomial")
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_one_sample_data(
"multinomial", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_one_sample_data(
"multinomial", to_data_object = FALSE))
testthat::test_that("Multinomial models can predict single instances using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "multinomial"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "multinomial"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Count data with multiple instances -------------------------------------------
# Create a dataset using the good dataset.
data <- familiar:::test_create_good_data("count")
# Train a simple linear GLM using the good dataset.
fam_model <- familiar:::test_train(
data = data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(data)),
learner = "lasso_poisson",
create_novelty_detector = TRUE
)
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_good_data(
"count", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_good_data(
"count", to_data_object = FALSE)
)
testthat::test_that("Count models can predict using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "count"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "count"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Count data with one instance -------------------------------------------------
# Create one-sample dataset.
data <- familiar:::test_create_one_sample_data("count")
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_one_sample_data(
"count", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_one_sample_data(
"count", to_data_object = FALSE))
testthat::test_that("Count models can predict single instances using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "count"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "count"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Continuous data with multiple instances --------------------------------------
# Create a dataset using the good dataset.
data <- familiar:::test_create_good_data("continuous")
# Train a simple linear GLM using the good dataset.
fam_model <- familiar:::test_train(
data = data,
cluster_method = "none",
imputation_method = "simple",
hyperparameter_list = list("sign_size" = familiar:::get_n_features(data)),
learner = "lasso_gaussian",
create_novelty_detector = TRUE
)
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_good_data(
"continuous", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_good_data(
"continuous", to_data_object = FALSE))
testthat::test_that("Continuous models can predict using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "continuous"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "continuous"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
# Continuous data with one instance --------------------------------------------
# Create one-sample dataset.
data <- familiar:::test_create_one_sample_data("continuous")
# Default predictions using data object.
predictions_1 <- familiar::predict(
object = fam_model,
newdata = data)
# Default predictions using data.table.
predictions_2 <- familiar::predict(
object = fam_model,
newdata = familiar:::test_create_one_sample_data(
"continuous", to_data_object = FALSE))
# Novelty.
predictions_novelty_1 <- familiar::predict(
object = fam_model,
newdata = data,
type = "novelty")
# Novelty predictions using data.table.
predictions_novelty_2 <- familiar::predict(
object = fam_model@novelty_detector,
newdata = familiar:::test_create_one_sample_data(
"continuous", to_data_object = FALSE))
testthat::test_that("Continuous models can predict single instances using external data.", {
# Check that predictions 1 and 2 are equal.
testthat::expect_equal(predictions_1, predictions_2, ignore_attr = TRUE)
testthat::expect_equal(predictions_novelty_1, predictions_novelty_2, ignore_attr = TRUE)
# Check that the number of rows is equal to the input data.
testthat::expect_equal(nrow(predictions_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_2), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_1), nrow(data@data))
testthat::expect_equal(nrow(predictions_novelty_2), nrow(data@data))
# Check that all predictions are valid.
testthat::expect_equal(familiar:::any_predictions_valid(predictions_1, "continuous"), TRUE)
testthat::expect_equal(familiar:::any_predictions_valid(predictions_2, "continuous"), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_1$novelty)), TRUE)
testthat::expect_equal(all(is.finite(predictions_novelty_2$novelty)), TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.