Description Usage Arguments Value Author(s) See Also Examples
This function calculates the sensitivity for a series of data, e.g. a time series.
1 2 3 4 |
data |
Array of data to use of the form todo |
data.zoo |
Zoo object containing data with one row per parameter set |
xval |
Vector to use as x data for plotting |
direction |
Dimension which contains the todo |
numberf |
Number of parameters used |
order |
Order of parameter frequency independence (see Cukier1975) |
legend |
legend text to plot |
cukier |
boolean. Indicates wheter to use |
reorder |
A vector of indices that allows to use a different order for the parameters. This is important to check effects of the sampling scheme on results. Use the same as for |
... |
Arguments passed to p.sensitivity |
An array of sensitivities of the form ...
Dominik Reusser
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | #The model depends on 4 parameters
#
#It produces a weighted sum of the 4 parameters and returns this sum
#
#The weights depend on an additional parameter x=1:200
example_model2(p=c(1,3,1,1),fig=TRUE)
example_model2(p=c(1,2,2,3),fig=TRUE)
paras<-fast_parameters(min=c(0,0,0,0),max=c(1,2,2,3))
paras
model_results <- apply(paras, 1, example_model2)
model_results
sensitivity <- sensitivity_rep(data = model_results, xval=1:200, direction = 1, order=4 , numberf=4)
p.sensitivity(sen=sensitivity, xval=1:200, legend=names(paras))
#Alternatively with zoo object
result.zoo <- zoo(model_results, order.by=1:200)
sensitivity <- sensitivity_rep(data.zoo = result.zoo, numberf=4)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.