cocktail: Fits the regularization paths for the elastic net penalized...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/cocktail.R

Description

Fits a regularization path for the elastic net penalized Cox's model at a sequence of regularization parameters lambda.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
cocktail(x,y,d,
	nlambda=100,
	lambda.min=ifelse(nobs<nvars,1e-2,1e-4),
	lambda=NULL, 
	alpha=1,
	pf=rep(1,nvars),
	exclude,
	dfmax=nvars+1,
	pmax=min(dfmax*1.2,nvars),
	standardize=TRUE,
	eps=1e-6,
	maxit=3e4)

Arguments

x

matrix of predictors, of dimension N*p; each row is an observation vector.

y

a survival time for Cox models. Currently tied failure times are not supported.

d

censor status with 1 if died and 0 if right censored.

nlambda

the number of lambda values - default is 100.

lambda.min

given as a fraction of lambda.max - the smallest value of lambda for which all coefficients are zero. The default depends on the relationship between N (the number of rows in the matrix of predictors) and p (the number of predictors). If N > p, the default is 0.0001, close to zero. If N<p, the default is 0.01. A very small value of lambda.min will lead to a saturated fit. It takes no effect if there is user-defined lambda sequence.

lambda

a user supplied lambda sequence. Typically, by leaving this option unspecified users can have the program compute its own lambda sequence based on nlambda and lambda.min. Supplying a value of lambda overrides this. It is better to supply a decreasing sequence of lambda values than a single (small) value, if not, the program will sort user-defined lambda sequence in decreasing order automatically.

alpha

The elasticnet mixing parameter, with 0 < α <= 1. See details.

pf

separate penalty weights can be applied to each coefficient of beta to allow differential shrinkage. Can be 0 for some variables, which implies no shrinkage, and results in that variable always being included in the model. Default is 1 for all variables (and implicitly infinity for variables listed in exclude). See details.

exclude

indices of variables to be excluded from the model. Default is none. Equivalent to an infinite penalty factor.

dfmax

limit the maximum number of variables in the model. Useful for very large p, if a partial path is desired. Default is p+1.

pmax

limit the maximum number of variables ever to be nonzero. For example once β enters the model, no matter how many times it exits or re-enters model through the path, it will be counted only once. Default is min(dfmax*1.2,p).

standardize

logical flag for variable standardization, prior to fitting the model sequence. If TRUE, x matrix is normalized such that sum squares of each column <Xj,Xj>/N=1. Note that x is always centered (i.e. sum(Xj)=0) no matter standardize is TRUE or FALSE. The coefficients are always returned on the original scale. Default is is TRUE.

eps

convergence threshold for coordinate majorization descent. Each inner coordinate majorization descent loop continues until the relative change in any coefficient (i.e. max(j)|beta_new[j]-beta_old[j]|^2) is less than eps. Defaults value is 1e-6.

maxit

maximum number of outer-loop iterations allowed at fixed lambda value. Default is 1e4. If models do not converge, consider increasing maxit.

Details

The algorithm estimates β based on observed data, through elastic net penalized log partial likelihood of Cox's model.

\arg\min(-loglik(Data,β)+λ*P(β))

It can compute estimates at a fine grid of values of lambdas in order to pick up a data-driven optimal lambda for fitting a 'best' final model. The penalty is a combination of l1 and l2 penalty:

P(β)=(1-α)/2||β||_2^2+α||β||_1.

alpha=1 is the lasso penalty. For computing speed reason, if models are not converging or running slow, consider increasing eps, decreasing nlambda, or increasing lambda.min before increasing maxit.

FAQ:

Question: I am not sure how are we optimizing alpha. I can get optimal lambda for each value of alpha. But how do I select optimum alpha?

Answer: cv.cocktail only finds the optimal lambda given alpha fixed. So to chose a good alpha you need to fit CV on a grid of alpha, say (0.1,0.3, 0.6, 0.9, 1) and let cv.cocktail choose the optimal lambda for each alpha, then you choose the (alpha, lambda) pair that corresponds to the lowest predicted deviance.

Question: I understand your are referring to minimizing the quantity cv.cocktail\$cvm, the mean 'cross-validated error' to optimize alpha and lambda as you did in your implementation. However, I don't know what the equation of this error is and this error is not referred to in your paper either. Do you mind explaining what this is?

Answer: We first define the log partial-likelihood for the Cox model. Assume \hat{β}^{[k]} is the estimate fitted on k-th fold, define the log partial likelihood function as

L(Data,\hat{β}[k])=∑_{s=1}^{S} x_{i_{s}}^{T}\hat{β}[k]-\log(∑_{i\in R_{s}}\exp(x_{i}^{T}\hat{β}[k])).

Then the log partial-likelihood deviance of the k-th fold is defined as

D[Data,k]=-2(L(Data,\hat{β}[k])).

We now define the measurement we actually use for cross validation: it is the difference between the log partial-likelihood deviance evaluated on the full dataset and that evaluated on the on the dataset with k-th fold excluded. The cross-validated error is defined as

CV-ERR[k]=D(Data[full],k)-D(Data[k^{th}\,\,fold\,\,excluded],k).

Value

An object with S3 class cocktail.

call

the call that produced this object

beta

a p*length(lambda) matrix of coefficients, stored as a sparse matrix (dgCMatrix class, the standard class for sparse numeric matrices in the Matrix package.). To convert it into normal type matrix use as.matrix().

lambda

the actual sequence of lambda values used

df

the number of nonzero coefficients for each value of lambda.

dim

dimension of coefficient matrix (ices)

npasses

total number of iterations (the most inner loop) summed over all lambda values

jerr

error flag, for warnings and errors, 0 if no error.

Author(s)

Yi Yang and Hui Zou
Maintainer: Yi Yang <yi.yang6@mcgill.ca>

References

Yang, Y. and Zou, H. (2013), "A Cocktail Algorithm for Solving The Elastic Net Penalized Cox's Regression in High Dimensions", Statistics and Its Interface, 6:2, 167-173.
https://github.com/emeryyi/fastcox

See Also

plot.cocktail

Examples

1
2
3
4
data(FHT)
m1<-cocktail(x=FHT$x,y=FHT$y,d=FHT$status,alpha=0.5)
predict(m1,type="nonzero")
plot(m1)

Example output

Loading required package: Matrix
$s0
NULL

$s1
[1]  1 45

$s2
[1]  1 45

$s3
[1]  1  7 45

$s4
[1]  1  7 45 55

$s5
[1]  1  7 45 55

$s6
[1]  1  7 12 45 55

$s7
[1]  1  7 12 45 55

$s8
[1]  1  7 12 45 55

$s9
[1]  1  7 12 45 55

$s10
[1]  1  7 12 17 42 45 55

$s11
[1]  1  7 12 14 17 42 45 55 59

$s12
 [1]  1  7 12 14 17 42 45 55 59 74 91

$s13
 [1]   1   7  12  14  17  42  45  55  59  74  91 100

$s14
 [1]   1   7  10  12  14  17  42  45  55  59  74  91 100

$s15
 [1]   1   2   7  10  12  14  17  28  42  45  55  59  74  91 100

$s16
 [1]   1   2   7  10  12  14  17  28  42  45  55  59  74  91 100

$s17
 [1]   1   2   7  10  12  14  17  28  42  45  55  59  71  74  91 100

$s18
 [1]   1   2   7  10  12  14  17  28  42  45  55  59  71  74  91  98 100

$s19
 [1]   1   2   7  10  12  14  17  28  42  45  55  59  71  74  91  96  98 100

$s20
 [1]   1   2   7  10  12  14  17  26  28  42  45  55  56  59  71  74  91  96  98
[20] 100

$s21
 [1]   1   2   7  10  12  14  17  26  28  42  45  55  56  59  71  74  91  96  98
[20] 100

$s22
 [1]   1   2   5   7  10  12  14  17  26  28  42  45  55  56  59  71  74  91  96
[20]  98 100

$s23
 [1]   1   2   5   7  10  12  14  17  26  28  30  42  44  45  55  56  59  71  74
[20]  84  91  96  98 100

$s24
 [1]   1   2   5   7  10  12  14  17  26  28  30  31  42  44  45  55  56  59  71
[20]  74  77  84  91  96  98 100

$s25
 [1]   1   2   5   7  10  12  14  17  26  28  30  31  42  44  45  55  56  59  71
[20]  74  77  84  91  96  98 100

$s26
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  42  44  45  55  56  59
[20]  71  74  77  84  91  96  98 100

$s27
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  39  42  44  45  55  56
[20]  59  71  74  77  84  88  91  96  98 100

$s28
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  39  42  44  45  55  56
[20]  59  71  74  77  84  88  91  96  98 100

$s29
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  39  42  44  45  55  56
[20]  59  71  74  75  77  84  88  91  96  98 100

$s30
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  39  42  44  45  55  56
[20]  59  71  74  75  77  84  88  91  96  98 100

$s31
 [1]   1   2   5   7  10  12  14  17  23  26  28  30  31  39  42  44  45  55  56
[20]  59  63  71  74  75  77  84  88  91  96  98 100

$s32
 [1]   1   2   5   7  10  12  14  23  26  28  30  31  39  42  44  45  55  56  59
[20]  63  71  74  75  77  84  88  91  96  98 100

$s33
 [1]   1   2   5   7  10  11  12  14  23  26  28  30  31  39  42  44  45  55  56
[20]  59  63  71  74  75  77  84  88  91  96  98 100

$s34
 [1]   1   2   3   5   7  10  11  12  14  23  26  28  30  31  39  40  42  44  45
[20]  48  55  56  59  63  71  74  75  77  84  88  91  96  98 100

$s35
 [1]   1   2   3   5   7  10  11  12  14  23  26  28  30  31  39  40  42  44  45
[20]  48  55  56  59  63  71  74  75  77  84  88  91  96  98 100

$s36
 [1]   1   2   3   5   7  10  11  12  14  23  26  28  30  31  39  40  42  44  45
[20]  48  55  56  59  63  71  74  75  77  84  88  91  96  98 100

$s37
 [1]   1   2   3   5   7  10  11  12  14  23  26  28  30  31  39  40  42  44  45
[20]  48  55  56  59  63  71  74  75  77  84  88  91  96  98 100

$s38
 [1]   1   2   3   5   7   8  10  11  12  14  16  23  26  28  30  31  39  40  42
[20]  44  45  48  49  55  56  59  62  63  65  71  74  75  77  84  88  91  96  98
[39] 100

$s39
 [1]   1   2   3   5   7   8  10  11  12  14  16  23  26  28  30  31  39  40  42
[20]  44  45  48  49  55  56  59  62  63  64  65  71  74  75  77  84  88  91  96
[39]  98 100

$s40
 [1]   1   2   3   5   7   8  10  11  12  14  16  23  26  28  31  39  40  42  44
[20]  45  48  49  55  56  59  62  63  64  65  71  74  75  77  84  88  91  96  98
[39] 100

$s41
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  39  40
[20]  42  44  45  48  49  55  56  59  62  63  64  65  71  74  75  77  84  88  96
[39]  98 100

$s42
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  39  40
[20]  42  44  45  48  49  55  56  59  62  63  64  65  71  74  75  77  84  88  96
[39]  98 100

$s43
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  37  39
[20]  40  42  44  45  46  48  49  55  56  58  59  62  63  64  65  71  72  74  75
[39]  77  84  88  96  98 100

$s44
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  37  39
[20]  40  42  44  45  46  48  49  55  56  58  59  62  63  64  65  71  72  74  75
[39]  77  84  88  96  98 100

$s45
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  36  37
[20]  39  40  42  44  45  46  48  49  55  56  58  59  62  63  64  65  70  71  72
[39]  74  75  77  84  86  88  96  98 100

$s46
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  34  36
[20]  37  39  40  41  42  44  45  46  48  49  55  56  58  59  62  63  64  65  70
[39]  71  72  74  75  77  84  86  88  96  98 100

$s47
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  34  36
[20]  37  39  40  41  42  44  45  46  48  49  55  56  58  59  62  63  64  65  70
[39]  71  72  73  74  75  77  84  86  88  96  98 100

$s48
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  23  26  28  31  32  34  36
[20]  37  39  40  41  42  44  45  46  47  48  49  55  56  58  59  62  63  64  65
[39]  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s49
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34
[20]  36  37  39  40  41  42  44  45  46  47  48  49  55  56  58  59  62  63  64
[39]  65  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s50
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34
[20]  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63
[39]  64  65  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s51
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34
[20]  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63
[39]  64  65  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s52
 [1]   1   2   3   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34  36
[20]  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63  64
[39]  65  66  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s53
 [1]   1   2   3   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34  36
[20]  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63  64
[39]  65  66  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s54
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34
[20]  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63
[39]  64  65  66  70  71  72  73  74  75  77  83  84  86  88  96  98 100

$s55
 [1]   1   2   3   5   7   8  10  11  12  14  16  17  18  23  26  28  31  32  34
[20]  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59  62  63
[39]  64  65  66  70  71  72  73  74  75  77  83  84  86  88  95  96  98 100

$s56
 [1]   1   2   3   5   7   8  10  11  12  14  15  16  17  18  23  26  27  28  31
[20]  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59
[39]  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  88  95  96  98
[58] 100

$s57
 [1]   1   2   3   5   7   8  10  11  12  14  15  16  17  18  23  26  27  28  31
[20]  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59
[39]  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  88  93  95  96
[58]  98 100

$s58
 [1]   1   2   3   5   7   8  10  11  12  14  15  16  17  18  23  26  27  28  31
[20]  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58  59
[39]  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93  95
[58]  96  98 100

$s59
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s60
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s61
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s62
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s63
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s64
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s65
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  93
[58]  95  96  98 100

$s66
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  90
[58]  93  95  96  98 100

$s67
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  90
[58]  93  95  96  98 100

$s68
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  90
[58]  93  95  96  98 100

$s69
 [1]   1   2   3   5   7   8   9  10  11  12  14  15  16  17  18  23  26  27  28
[20]  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55  56  58
[39]  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87  88  90
[58]  93  95  96  98 100

$s70
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55
[39]  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87
[58]  88  90  93  95  96  98 100

$s71
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55
[39]  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87
[58]  88  90  93  95  96  98 100

$s72
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55
[39]  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87
[58]  88  90  93  95  96  98 100

$s73
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55
[39]  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87
[58]  88  90  93  95  96  98 100

$s74
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  54  55
[39]  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86  87
[58]  88  90  93  94  95  96  98 100

$s75
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s76
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s77
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s78
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s79
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s80
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s81
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s82
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s83
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  98 100

$s84
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s85
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s86
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s87
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s88
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s89
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s90
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s91
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s92
 [1]   1   2   3   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26  27
[20]  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52  54
[39]  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84  86
[58]  87  88  90  93  94  95  96  97  98 100

$s93
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  14  15  16  17  18  23  26
[20]  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49  52
[39]  54  55  56  58  59  62  63  64  65  66  70  71  72  73  74  75  77  83  84
[58]  86  87  88  90  93  94  95  96  97  98 100

$s94
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  62  63  64  65  66  67  70  71  72  73  74  75  77
[58]  83  84  86  87  88  90  93  94  95  96  97  98 100

$s95
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  60  62  63  64  65  66  67  70  71  72  73  74  75
[58]  77  83  84  86  87  88  90  93  94  95  96  97  98 100

$s96
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  60  62  63  64  65  66  67  70  71  72  73  74  75
[58]  77  83  84  86  87  88  90  92  93  94  95  96  97  98 100

$s97
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  60  62  63  64  65  66  67  70  71  72  73  74  75
[58]  77  83  84  86  87  88  90  92  93  94  95  96  97  98 100

$s98
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  60  62  63  64  65  66  67  70  71  72  73  74  75
[58]  77  83  84  86  87  88  90  92  93  94  95  96  97  98 100

$s99
 [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  23
[20]  26  27  28  29  31  32  34  36  37  39  40  41  42  44  45  46  47  48  49
[39]  52  54  55  56  58  59  60  62  63  64  65  66  67  70  71  72  73  74  75
[58]  77  83  84  86  87  88  90  92  93  94  95  96  97  98 100

fastcox documentation built on May 2, 2019, 10:25 a.m.

Related to cocktail in fastcox...