Description Usage Arguments Details Value Author(s) References See Also Examples
Does k-fold cross-validation for cocktail, produces a plot,
and returns a value for lambda
. This function is modified based on the cv
function from the glmnet
package.
1 | cv.cocktail(x,y,d,lambda=NULL,nfolds=5,foldid,...)
|
x |
matrix of predictors, of dimension N*p; each row is an observation vector. |
y |
a survival time for Cox models. Currently tied failure times are not supported. |
d |
censor status with 1 if died and 0 if right censored. |
lambda |
optional user-supplied lambda sequence; default is
|
nfolds |
number of folds - default is 5. Although |
foldid |
an optional vector of values between 1 and |
... |
other arguments that can be passed to cocktail. |
The function runs cocktail
nfolds
+1 times; the
first to get the lambda
sequence, and then the remainder to
compute the fit with each of the folds omitted. The average error and standard deviation over the
folds are computed.
an object of class cv.cocktail
is returned, which is a
list with the ingredients of the cross-validation fit.
lambda |
the values of |
cvm |
the mean cross-validated error - a vector of length
|
cvsd |
estimate of standard error of |
cvup |
upper curve = |
cvlo |
lower curve = |
nzero |
number of non-zero coefficients at each |
name |
a text string indicating partial likelihood (for plotting purposes). |
cocktail.fit |
a fitted |
lambda.min |
The optimal value of |
lambda.1se |
The largest value of |
Yi Yang and Hui Zou
Maintainer: Yi Yang <yi.yang6@mcgill.ca>
Yang, Y. and Zou, H. (2013),
"A Cocktail Algorithm for Solving The Elastic Net Penalized Cox's Regression in High Dimensions", Statistics and Its Interface, 6:2, 167-173.
https://github.com/emeryyi/fastcox
Friedman, J., Hastie, T., and Tibshirani, R. (2010), "Regularization paths for generalized
linear models via coordinate descent," Journal of Statistical Software, 33, 1.
http://www.jstatsoft.org/v33/i01/
1 2 3 4 |
Loading required package: Matrix
$lambda
[1] 5.228104e-01 4.763654e-01 4.340464e-01 3.954869e-01 3.603529e-01
[6] 3.283402e-01 2.991713e-01 2.725938e-01 2.483773e-01 2.263121e-01
[11] 2.062072e-01 1.878883e-01 1.711968e-01 1.559882e-01 1.421306e-01
[16] 1.295041e-01 1.179993e-01 1.075166e-01 9.796512e-02 8.926217e-02
[21] 8.133237e-02 7.410702e-02 6.752356e-02 6.152495e-02 5.605925e-02
[26] 5.107910e-02 4.654137e-02 4.240676e-02 3.863946e-02 3.520684e-02
[31] 3.207916e-02 2.922934e-02 2.663268e-02 2.426671e-02 2.211092e-02
[36] 2.014665e-02 1.835688e-02 1.672610e-02 1.524020e-02 1.388630e-02
[41] 1.265268e-02 1.152865e-02 1.050448e-02 9.571290e-03 8.721003e-03
[46] 7.946253e-03 7.240330e-03 6.597119e-03 6.011049e-03 5.477044e-03
[51] 4.990479e-03 4.547138e-03 4.143183e-03 3.775114e-03 3.439743e-03
[56] 3.134166e-03 2.855735e-03 2.602040e-03 2.370882e-03 2.160259e-03
[61] 1.968348e-03 1.793485e-03 1.634157e-03 1.488983e-03 1.356706e-03
[66] 1.236180e-03 1.126361e-03 1.026298e-03 9.351246e-04 8.520507e-04
[71] 7.763569e-04 7.073875e-04 6.445451e-04 5.872855e-04 5.351127e-04
[76] 4.875747e-04 4.442599e-04 4.047931e-04 3.688324e-04 3.360663e-04
[81] 3.062111e-04 2.790082e-04 2.542219e-04 2.316375e-04 2.110595e-04
[86] 1.923095e-04 1.752253e-04 1.596587e-04 1.454751e-04 1.325515e-04
[91] 1.207760e-04 1.100466e-04 1.002703e-04 9.136260e-05 8.324620e-05
[96] 7.585084e-05 6.911246e-05 6.297270e-05 5.737838e-05 5.228104e-05
$cvm
[1] 7.988034 8.001951 8.011603 8.021837 8.012530 8.006864 8.004877 7.996505
[9] 7.988101 7.953593 7.920563 7.845395 7.777487 7.716275 7.658313 7.604863
[17] 7.554429 7.498828 7.446816 7.399437 7.347498 7.301799 7.261896 7.227928
[25] 7.199561 7.178166 7.163354 7.152179 7.142928 7.134919 7.130877 7.132719
[33] 7.140008 7.153254 7.171051 7.192521 7.217223 7.244879 7.278302 7.315247
[41] 7.354929 7.395963 7.438348 7.482634 7.526644 7.571226 7.616295 7.660807
[49] 7.704474 7.748301 7.790353 7.831609 7.872294 7.911219 7.948360 7.984770
[57] 8.018421 8.051096 8.081975 8.111566 8.138783 8.164794 8.188947 8.211957
[65] 8.233456 8.253066 8.269746 8.287938 8.305249 8.319147 8.332370 8.342494
[73] 8.356300 8.367304 8.376278 8.385870 8.394783 8.400613 8.409897 8.415067
[81] 8.420286 8.425524 8.431414 8.436616 8.441782 8.443247 8.448431 8.449900
[89] 8.455076 8.456539 8.460786 8.462233 8.463677 8.465121 8.466564 8.468004
[97] 8.469441 8.470874 8.472303 8.473725
$cvsd
[1] 0.6935363 0.7053006 0.7166984 0.7247742 0.7000575 0.6717964 0.6447913
[8] 0.6193956 0.6090145 0.6165201 0.6261189 0.6491557 0.6776203 0.7071999
[15] 0.7350268 0.7604401 0.7831095 0.7910779 0.7968669 0.8022367 0.8118337
[22] 0.8202156 0.8268783 0.8321305 0.8367071 0.8394284 0.8403013 0.8399029
[29] 0.8367117 0.8275688 0.8166601 0.8047574 0.7917537 0.7777477 0.7628224
[36] 0.7475200 0.7317526 0.7159345 0.7033385 0.6928289 0.6825653 0.6726859
[43] 0.6629450 0.6538107 0.6453698 0.6377229 0.6312570 0.6255475 0.6206640
[50] 0.6170169 0.6145697 0.6130963 0.6122433 0.6127379 0.6138564 0.6153601
[57] 0.6179932 0.6209896 0.6243917 0.6283667 0.6320129 0.6361944 0.6403695
[64] 0.6444673 0.6487126 0.6527402 0.6575600 0.6610503 0.6647548 0.6693714
[71] 0.6712912 0.6747638 0.6789607 0.6811446 0.6838988 0.6871646 0.6899810
[78] 0.6919825 0.6933511 0.6949333 0.6965453 0.6981759 0.7002827 0.7019159
[85] 0.7035494 0.7037893 0.7054451 0.7056904 0.7073615 0.7076101 0.7089403
[92] 0.7091903 0.7094432 0.7097001 0.7099611 0.7102259 0.7104947 0.7107670
[99] 0.7110428 0.7113218
$cvup
[1] 8.681570 8.707251 8.728302 8.746611 8.712587 8.678660 8.649668 8.615900
[9] 8.597116 8.570113 8.546682 8.494550 8.455108 8.423474 8.393340 8.365303
[17] 8.337539 8.289906 8.243683 8.201673 8.159332 8.122014 8.088774 8.060058
[25] 8.036268 8.017594 8.003655 7.992082 7.979640 7.962488 7.947537 7.937476
[33] 7.931761 7.931001 7.933874 7.940040 7.948976 7.960814 7.981641 8.008076
[41] 8.037494 8.068649 8.101293 8.136445 8.172014 8.208948 8.247552 8.286354
[49] 8.325138 8.365318 8.404923 8.444705 8.484537 8.523957 8.562217 8.600130
[57] 8.636414 8.672085 8.706367 8.739932 8.770796 8.800989 8.829317 8.856425
[65] 8.882168 8.905806 8.927306 8.948988 8.970004 8.988519 9.003662 9.017258
[73] 9.035261 9.048448 9.060177 9.073035 9.084764 9.092595 9.103248 9.110000
[81] 9.116831 9.123700 9.131697 9.138532 9.145331 9.147037 9.153876 9.155591
[89] 9.162438 9.164149 9.169726 9.171423 9.173121 9.174821 9.176525 9.178230
[97] 9.179936 9.181642 9.183346 9.185047
$cvlo
[1] 7.294497 7.296650 7.294905 7.297062 7.312472 7.335067 7.360086 7.377109
[9] 7.379087 7.337073 7.294444 7.196239 7.099867 7.009075 6.923286 6.844422
[17] 6.771320 6.707750 6.649949 6.597200 6.535665 6.481583 6.435018 6.395797
[25] 6.362854 6.338737 6.323053 6.312276 6.306216 6.307350 6.314217 6.327961
[33] 6.348254 6.375506 6.408229 6.445001 6.485470 6.528945 6.574964 6.622419
[41] 6.672364 6.723277 6.775403 6.828824 6.881274 6.933503 6.985037 7.035259
[49] 7.083810 7.131284 7.175783 7.218513 7.260051 7.298481 7.334504 7.369410
[57] 7.400427 7.430106 7.457584 7.483199 7.506770 7.528600 7.548578 7.567490
[65] 7.584743 7.600326 7.612186 7.626888 7.640494 7.649776 7.661079 7.667731
[73] 7.677339 7.686159 7.692379 7.698706 7.704801 7.708630 7.716546 7.720133
[81] 7.723740 7.727349 7.731132 7.734700 7.738233 7.739458 7.742985 7.744210
[89] 7.747715 7.748929 7.751846 7.753043 7.754234 7.755421 7.756602 7.757778
[97] 7.758947 7.760107 7.761260 7.762404
$nzero
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19
0 2 2 2 2 2 4 4 4 5 5 5 6 6 6 6 7 7 7 7
s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 s32 s33 s34 s35 s36 s37 s38 s39
7 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10
s40 s41 s42 s43 s44 s45 s46 s47 s48 s49 s50 s51 s52 s53 s54 s55 s56 s57 s58 s59
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
s60 s61 s62 s63 s64 s65 s66 s67 s68 s69 s70 s71 s72 s73 s74 s75 s76 s77 s78 s79
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
s80 s81 s82 s83 s84 s85 s86 s87 s88 s89 s90 s91 s92 s93 s94 s95 s96 s97 s98 s99
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
$name
[1] "Partial-Likelihood Deviance"
$cocktail.fit
Call: cocktail(x = x, y = y, d = d, lambda = lambda, alpha = 0.5)
Df Lambda
[1,] 0 5.228e-01
[2,] 2 4.764e-01
[3,] 2 4.340e-01
[4,] 2 3.955e-01
[5,] 2 3.604e-01
[6,] 2 3.283e-01
[7,] 4 2.992e-01
[8,] 4 2.726e-01
[9,] 4 2.484e-01
[10,] 5 2.263e-01
[11,] 5 2.062e-01
[12,] 5 1.879e-01
[13,] 6 1.712e-01
[14,] 6 1.560e-01
[15,] 6 1.421e-01
[16,] 6 1.295e-01
[17,] 7 1.180e-01
[18,] 7 1.075e-01
[19,] 7 9.797e-02
[20,] 7 8.926e-02
[21,] 7 8.133e-02
[22,] 7 7.411e-02
[23,] 7 6.752e-02
[24,] 7 6.152e-02
[25,] 7 5.606e-02
[26,] 7 5.108e-02
[27,] 7 4.654e-02
[28,] 8 4.241e-02
[29,] 8 3.864e-02
[30,] 8 3.521e-02
[31,] 8 3.208e-02
[32,] 9 2.923e-02
[33,] 9 2.663e-02
[34,] 9 2.427e-02
[35,] 9 2.211e-02
[36,] 10 2.015e-02
[37,] 10 1.836e-02
[38,] 10 1.673e-02
[39,] 10 1.524e-02
[40,] 10 1.389e-02
[41,] 10 1.265e-02
[42,] 10 1.153e-02
[43,] 10 1.050e-02
[44,] 10 9.571e-03
[45,] 10 8.721e-03
[46,] 10 7.946e-03
[47,] 10 7.240e-03
[48,] 10 6.597e-03
[49,] 10 6.011e-03
[50,] 10 5.477e-03
[51,] 10 4.990e-03
[52,] 10 4.547e-03
[53,] 10 4.143e-03
[54,] 10 3.775e-03
[55,] 10 3.440e-03
[56,] 10 3.134e-03
[57,] 10 2.856e-03
[58,] 10 2.602e-03
[59,] 10 2.371e-03
[60,] 10 2.160e-03
[61,] 10 1.968e-03
[62,] 10 1.793e-03
[63,] 10 1.634e-03
[64,] 10 1.489e-03
[65,] 10 1.357e-03
[66,] 10 1.236e-03
[67,] 10 1.126e-03
[68,] 10 1.026e-03
[69,] 10 9.351e-04
[70,] 10 8.521e-04
[71,] 10 7.764e-04
[72,] 10 7.074e-04
[73,] 10 6.445e-04
[74,] 10 5.873e-04
[75,] 10 5.351e-04
[76,] 10 4.876e-04
[77,] 10 4.443e-04
[78,] 10 4.048e-04
[79,] 10 3.688e-04
[80,] 10 3.361e-04
[81,] 10 3.062e-04
[82,] 10 2.790e-04
[83,] 10 2.542e-04
[84,] 10 2.316e-04
[85,] 10 2.111e-04
[86,] 10 1.923e-04
[87,] 10 1.752e-04
[88,] 10 1.597e-04
[89,] 10 1.455e-04
[90,] 10 1.326e-04
[91,] 10 1.208e-04
[92,] 10 1.100e-04
[93,] 10 1.003e-04
[94,] 10 9.136e-05
[95,] 10 8.325e-05
[96,] 10 7.585e-05
[97,] 10 6.911e-05
[98,] 10 6.297e-05
[99,] 10 5.738e-05
[100,] 10 5.228e-05
$lambda.min
[1] 0.03207916
$lambda.1se
[1] 0.2062072
attr(,"class")
[1] "cv.cocktail"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.