Description Usage Arguments Details Value Author(s) References Examples
Print a summary of the cocktail path at each step along the path. This function is modified based on the print
function from the glmnet
package.
1 2 |
x |
fitted |
digits |
significant digits in printout |
... |
additional print arguments |
The call that produced the cocktail
object is printed, followed by a two-column matrix with columns Df
and Lambda
. The Df
column is the number of nonzero coefficients.
a two-column matrix, the first columns is the number of nonzero coefficients and the second column is Lambda
.
Yi Yang and Hui Zou
Maintainer: Yi Yang <yi.yang6@mcgill.ca>
Yang, Y. and Zou, H. (2013),
"A Cocktail Algorithm for Solving The Elastic Net Penalized Cox's Regression in High Dimensions", Statistics and Its Interface, 6:2, 167-173.
https://github.com/emeryyi/fastcox
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
"Regularization Paths for Generalized Linear Models via Coordinate
Descent", http://www.stanford.edu/~hastie/Papers/glmnet.pdf
Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
http://www.jstatsoft.org/v33/i01/
Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011)
"Regularization Paths for Cox's Proportional Hazards Model via
Coordinate Descent", Journal of Statistical Software, Vol. 39(5)
1-13
http://www.jstatsoft.org/v39/i05/
1 2 3 |
Loading required package: Matrix
Call: cocktail(x = FHT$x, y = FHT$y, d = FHT$status, alpha = 0.5)
Df Lambda
[1,] 0 0.527100
[2,] 2 0.503100
[3,] 2 0.480300
[4,] 3 0.458400
[5,] 4 0.437600
[6,] 4 0.417700
[7,] 5 0.398700
[8,] 5 0.380600
[9,] 5 0.363300
[10,] 5 0.346800
[11,] 7 0.331000
[12,] 9 0.316000
[13,] 11 0.301600
[14,] 12 0.287900
[15,] 13 0.274800
[16,] 15 0.262300
[17,] 15 0.250400
[18,] 16 0.239000
[19,] 17 0.228200
[20,] 18 0.217800
[21,] 20 0.207900
[22,] 20 0.198400
[23,] 21 0.189400
[24,] 24 0.180800
[25,] 26 0.172600
[26,] 26 0.164700
[27,] 27 0.157300
[28,] 29 0.150100
[29,] 29 0.143300
[30,] 30 0.136800
[31,] 30 0.130600
[32,] 31 0.124600
[33,] 30 0.119000
[34,] 31 0.113600
[35,] 34 0.108400
[36,] 34 0.103500
[37,] 34 0.098760
[38,] 34 0.094280
[39,] 39 0.089990
[40,] 40 0.085900
[41,] 39 0.082000
[42,] 40 0.078270
[43,] 40 0.074710
[44,] 44 0.071320
[45,] 44 0.068070
[46,] 47 0.064980
[47,] 49 0.062030
[48,] 50 0.059210
[49,] 52 0.056520
[50,] 53 0.053950
[51,] 54 0.051500
[52,] 54 0.049160
[53,] 54 0.046920
[54,] 54 0.044790
[55,] 55 0.042750
[56,] 56 0.040810
[57,] 58 0.038950
[58,] 59 0.037180
[59,] 60 0.035490
[60,] 61 0.033880
[61,] 61 0.032340
[62,] 61 0.030870
[63,] 61 0.029470
[64,] 61 0.028130
[65,] 61 0.026850
[66,] 61 0.025630
[67,] 62 0.024460
[68,] 62 0.023350
[69,] 62 0.022290
[70,] 62 0.021280
[71,] 64 0.020310
[72,] 64 0.019390
[73,] 64 0.018510
[74,] 64 0.017670
[75,] 65 0.016860
[76,] 66 0.016100
[77,] 66 0.015360
[78,] 66 0.014670
[79,] 66 0.014000
[80,] 66 0.013360
[81,] 66 0.012760
[82,] 66 0.012180
[83,] 66 0.011620
[84,] 66 0.011090
[85,] 67 0.010590
[86,] 67 0.010110
[87,] 67 0.009649
[88,] 67 0.009211
[89,] 67 0.008792
[90,] 67 0.008393
[91,] 67 0.008011
[92,] 67 0.007647
[93,] 67 0.007299
[94,] 68 0.006968
[95,] 70 0.006651
[96,] 71 0.006349
[97,] 72 0.006060
[98,] 72 0.005785
[99,] 72 0.005522
[100,] 72 0.005271
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.