Nothing
checkParametersDE <- function(data, FEMbasis, lambda, scaling, step_method, direction_method, preprocess_method, tol1, tol2, nfolds, nsimulations, heatStep, heatIter, search)
{
################################################### Parameter Check ##################################################
if (is.null(data))
stop("'data' required; is NULL.")
else{
if(any(is.na(data)))
stop("Missing values not admitted in 'data'.")
}
if (is.null(FEMbasis))
stop("'FEMbasis' required; is NULL.")
if(!is(FEMbasis, "FEMbasis"))
stop("'FEMbasis' is not class 'FEMbasis'.")
if (is.null(lambda))
stop("'lambda' required; is NULL.")
else{
for(i in 1:length(lambda)){
if(lambda[i]<=0)
stop("'lambda' has to have positive members.")
}
}
if(scaling<=0)
stop("'scaling' needs to be a positive factor.")
if (is.null(step_method))
stop("'step_method' is required; is NULL.")
else{
if(step_method!="Fixed_Step" && step_method!="Backtracking_Method" && step_method!="Wolfe_Method")
stop("'step_method' needs to be either 'Fixed_Step' or 'Backtarcking_Method' or 'Wolfe_Method'.")
}
if (is.null(direction_method))
stop("'direction_method' is required; is NULL.")
else{
if(direction_method!="Gradient" && direction_method!="ConjugateGradientFR" && direction_method!="ConjugateGradientPRP" && direction_method!="ConjugateGradientHS" && direction_method!="ConjugateGradientDY" && direction_method!="ConjugateGradientCD" && direction_method!="ConjugateGradientLS" && direction_method!="BFGS" && direction_method!="L-BFGS5" && direction_method!="L-BFGS10")
stop("'direction_method' needs to be 'Gradient', 'ConjugateGradientFR', 'ConjugateGradientPRP', 'ConjugateGradientHS', 'ConjugateGradientDY', 'ConjugateGradientCD', 'ConjugateGradientLS', 'BFGS', 'L-BFGS5' or 'L-BFGS10'.")
}
if(length(lambda)>1 && preprocess_method!="RightCV" && preprocess_method!="SimplifiedCV")
stop("'preprocess_method' needs to be either 'RightCV' or 'SimplifiedCV' if there are more than one smoothing parameters 'lambda'.")
if(length(lambda)==1 && preprocess_method!="NoCrossValidation")
stop("'preprocess_method' needs to be 'NoCrossValidation' if there is only one smoothing parameter 'lambda'.")
if(preprocess_method=="SimplifiedCV" && length(lambda)!=nfolds)
stop("'SimplifiedCV' requires the number of lambdas equal to the number of folds.")
if(tol1 < 0 || tol2 < 0)
stop("Tolerances 'tol1' and 'tol2' needs to be non negative numbers")
if(length(lambda) > 1 && (!is.numeric(nfolds) || floor(nfolds)<=1))
stop("'nfolds' needs to be an integer greater or equal than two.")
if(!is.numeric(nsimulations) || nsimulations<1)
stop("'nsimulations' needs to be a positive integer.")
if(!is.numeric(heatStep) || heatStep<0 || heatStep>1)
stop("'heatStep' needs to be a positive real number not greater than 1.")
if(!is.numeric(heatIter) || heatIter<1)
stop("'heatIter' needs to be a positive integer.")
if(!is.numeric(search))
stop("'search' needs to be an integer.")
}
checkParametersSizeDE <- function(data, FEMbasis, ndim, fvec, preprocess_method, nfolds)
{
if(nrow(data) < 1)
stop("'data' must contain at least one element.")
if(preprocess_method!="NoCrossValidation" && nrow(data) < floor(nfolds))
stop("The number of folds needs to be less than the number of data.")
if(ncol(data) != ndim)
stop("'data' and the mesh points have incompatible size.")
if(!is.null(fvec)){
if(length(fvec) != nrow(FEMbasis$mesh$nodes))
stop("The length of fvec has to be equal to the number of mesh nodes")
}
if(preprocess_method!="NoCrossValidation")
if (nrow(data)*(floor(nfolds)-1)/floor(nfolds) < 30)
stop("The training set needs to have at least 30 data: increase the number of folds.")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.