Nothing
########## R function: SignifFeatureRegion ##########
# For determining the region of significant
# gradient for a particular bandwidth and
# significance level.
# Last changed: 18 JAN 2006
SignifFeatureRegion <- function(n, d, gcounts, gridsize, dest, bandwidth, signifLevel, range.x, grad=TRUE, curv=TRUE, neg.curv.only=TRUE)
{
h <- bandwidth
ESS <- n*dest$est*prod(h)*(sqrt(2*pi)^d)
SigESS <- ESS >= 5
Sig.scalar <- array(NA, dim=gridsize)
Sig2.scalar <- array(NA, dim=gridsize)
dest$est[dest$est<0] <- 0
## constant for variance of gradient estimate
Sig.scalar <- 1/2*(2*sqrt(pi))^(-d)*n^(-1)*prod(h)^(-1)*dest$est
## constants for variance of curvature estimate
if (d==1)
Sig2.scalar <- (8*sqrt(pi)*n*prod(h))^(-1)*dest$est
else if (d==2)
Sig2.scalar <- (16*pi*n*prod(h))^(-1)*dest$est
else if (d==3)
Sig2.scalar <- (32*pi^(3/2)*n*prod(h))^(-1)*dest$est
else if (d==4)
Sig2.scalar <- (64*pi^2*n*prod(h))^(-1)*dest$est
## Matrix square root - taken from Stephen Lake
## http://www5.biostat.wustl.edu/s-news/s-news-archive/200109/msg00067.html
matrix.sqrt <- function(A)
{
sva <- svd(A)
if (min(sva$d)>=0)
Asqrt <- sva$u %*% diag(sqrt(sva$d)) %*% t(sva$v)
else
stop("Matrix square root is not defined")
return(Asqrt)
}
if (d>1)
{
WaldGrad <- array(NA, dim=gridsize)
WaldCurv <- array(NA, dim=gridsize)
local.mode <- array(FALSE, dim=gridsize)
}
if (d==1)
{
if (grad)
{
obj1 <- drvkde(gcounts, drv=1, bandwidth=h, binned=TRUE, range.x=range.x, se=FALSE)
fhat1 <- obj1$est
Sig.inv12 <- 1/sqrt(Sig.scalar * h^(-2))
WaldGrad <- (Sig.inv12 * fhat1)^2
}
if (curv)
{
obj2 <- drvkde(gcounts,drv=2,bandwidth=h,binned=TRUE,range.x=range.x, se=FALSE)
fhat2 <- obj2$est
Sig2.inv12 <- 1/sqrt(Sig2.scalar * 3*h^(-4))
lambda1 <- Sig2.inv12 * fhat2
WaldCurv <- lambda1^2
local.mode <- (lambda1 < 0)
}
}
if (d==2)
{
if (grad)
{
obj10 <- drvkde(gcounts,drv=c(1,0),bandwidth=h,binned=TRUE,
range.x=range.x,se=FALSE)
obj01 <- drvkde(gcounts,drv=c(0,1),bandwidth=h,binned=TRUE,
range.x=range.x,se=FALSE)
fhat10 <- obj10$est
fhat01 <- obj01$est
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
if (SigESS[i1,i2])
{
Sig.inv12 <- 1/sqrt(Sig.scalar[i1,i2] * h^(-2))
WaldGrad[i1,i2] <- sum((Sig.inv12 * c(fhat10[i1,i2], fhat01[i1,i2]))^2)
}
}
if (curv)
{
Sig2.mat <-
matrix(c(3/h[1]^4, 0, 1/(h[1]^2*h[2]^2),
0, 1/(h[1]^2*h[2]^2), 0,
1/(h[1]^2*h[2]^2), 0, 3/h[2]^4),
nrow=3, ncol=3)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
obj20 <- drvkde(gcounts,drv=c(2,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj11 <- drvkde(gcounts,drv=c(1,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj02 <- drvkde(gcounts,drv=c(0,2),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
fhat20 <- obj20$est
fhat11 <- obj11$est
fhat02 <- obj02$est
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
if (SigESS[i1,i2])
{
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1,i2])*matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*%
c(fhat20[i1,i2], fhat11[i1,i2], fhat02[i1,i2])
WaldCurv[i1,i2] <- sum(fhat.temp^2)
}
lambda1 <- ((fhat20 + fhat02) - sqrt((fhat20-fhat02)^2 + 4*fhat11^2))/2
lambda2 <- ((fhat20 + fhat02) + sqrt((fhat20-fhat02)^2 + 4*fhat11^2))/2
local.mode <- (lambda1 < 0) & (lambda2 < 0)
}
}
if (d==3)
{
if (grad)
{
obj100 <- drvkde(gcounts,drv=c(1,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj010 <- drvkde(gcounts,drv=c(0,1,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj001 <- drvkde(gcounts,drv=c(0,0,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
fhat100 <- obj100$est
fhat010 <- obj010$est
fhat001 <- obj001$est
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
for (i3 in 1:gridsize[3])
if (SigESS[i1,i2,i3])
{
Sig.inv12 <- 1/sqrt(Sig.scalar[i1,i2,i3] * h^(-2))
WaldGrad[i1,i2,i3] <-
sum((Sig.inv12 * c(fhat100[i1,i2,i3], fhat010[i1,i2,i3],
fhat001[i1,i2,i3]))^2)
}
}
if (curv)
{
obj200 <- drvkde(gcounts,drv=c(2,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj110 <- drvkde(gcounts,drv=c(1,1,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj101 <- drvkde(gcounts,drv=c(1,0,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj020 <- drvkde(gcounts,drv=c(0,2,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj011 <- drvkde(gcounts,drv=c(0,1,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj002 <- drvkde(gcounts,drv=c(0,0,2),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
fhat200 <- obj200$est
fhat110 <- obj110$est
fhat101 <- obj101$est
fhat020 <- obj020$est
fhat011 <- obj011$est
fhat002 <- obj002$est
Sig2.mat <-
matrix(c(3/h[1]^4, 0, 0, 1/(h[1]*h[2])^2, 0, 1/(h[1]*h[3])^2,
0, 1/(h[1]*h[2])^2, 0, 0, 0, 0,
0, 0, 1/(h[1]*h[3])^2, 0, 0, 0,
1/(h[1]*h[2])^2, 0, 0, 3/h[2]^4, 0, 1/(h[2]*h[3])^2,
0, 0, 0, 0, 1/(h[2]*h[3])^2, 0,
1/(h[1]*h[3])^2, 0, 0, 1/(h[2]*h[3])^2, 0, 3/h[3]^4),
nrow=6, ncol=6)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
## at each grid point, find eigenvalues of vech'ed curvature matrix
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
for (i3 in 1:gridsize[3])
if (SigESS[i1,i2,i3])
{
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1,i2,i3]) *
matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*%
c(fhat200[i1,i2,i3], fhat110[i1,i2,i3], fhat101[i1,i2,i3],
fhat020[i1,i2,i3], fhat011[i1,i2,i3], fhat002[i1,i2,i3])
D2.mat <-
matrix(c(fhat200[i1,i2,i3], fhat110[i1,i2,i3], fhat101[i1,i2,i3],
fhat110[i1,i2,i3], fhat020[i1,i2,i3], fhat011[i1,i2,i3],
fhat101[i1,i2,i3], fhat011[i1,i2,i3], fhat002[i1,i2,i3]),
nrow=3)
lambda <- eigen(D2.mat, symmetric=TRUE, only.values=TRUE)$values
WaldCurv[i1,i2,i3] <- sum(fhat.temp^2)
local.mode[i1,i2,i3] <- all(lambda < 0)
}
}
}
if (d==4)
{
if (grad)
{
obj1000 <- drvkde(gcounts,drv=c(1,0,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0100 <- drvkde(gcounts,drv=c(0,1,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0010 <- drvkde(gcounts,drv=c(0,0,1,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0001 <- drvkde(gcounts,drv=c(0,0,0,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
fhat1000 <- obj1000$est
fhat0100 <- obj0100$est
fhat0010 <- obj0010$est
fhat0001 <- obj0001$est
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
for (i3 in 1:gridsize[3])
for (i4 in 1:gridsize[4])
if (SigESS[i1,i2,i3,i4])
{
Sig.inv12 <- 1/sqrt(Sig.scalar[i1,i2,i3,i4] * h^(-2))
WaldGrad[i1,i2,i3,i4] <-
sum((Sig.inv12*c(fhat1000[i1,i2,i3,i4],fhat0100[i1,i2,i3,i4],
fhat0010[i1,i2,i3,i4],fhat0001[i1,i2,i3,i4]))^2)
}
}
if (curv)
{
obj2000 <- drvkde(gcounts,drv=c(2,0,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj1100 <- drvkde(gcounts,drv=c(1,1,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj1010 <- drvkde(gcounts,drv=c(1,0,1,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj1001 <- drvkde(gcounts,drv=c(1,0,0,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0200 <- drvkde(gcounts,drv=c(0,2,0,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0110 <- drvkde(gcounts,drv=c(0,1,1,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0101 <- drvkde(gcounts,drv=c(0,1,0,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0020 <- drvkde(gcounts,drv=c(0,0,2,0),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0011 <- drvkde(gcounts,drv=c(0,0,1,1),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
obj0002 <- drvkde(gcounts,drv=c(0,0,0,2),bandwidth=h,
binned=TRUE,range.x=range.x, se=FALSE)
fhat2000 <- obj2000$est
fhat1100 <- obj1100$est
fhat1010 <- obj1010$est
fhat1001 <- obj1001$est
fhat0200 <- obj0200$est
fhat0110 <- obj0110$est
fhat0101 <- obj0101$est
fhat0020 <- obj0020$est
fhat0011 <- obj0011$est
fhat0002 <- obj0002$est
Sig2.mat <-
matrix(c(3/h[1]^4, 0, 0, 0, 1/(h[1]*h[2])^2, 0, 0, 1/(h[1]*h[3])^2, 0, 1/(h[1]*h[4])^2,
0, 1/(h[1]*h[2])^2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1/(h[1]*h[3])^2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1/(h[1]*h[4])^2, 0, 0, 0, 0, 0, 0,
1/(h[1]*h[2])^2, 0, 0, 0, 3/h[2]^4, 0, 0, 1/(h[2]*h[3])^2, 0, 1/(h[2]*h[4])^2,
0, 0, 0, 0, 0, 1/(h[2]*h[3])^2, 0, 0, 0, 0,
0, 0, 0, 0 ,0, 0, 1/(h[2]*h[4])^2, 0, 0, 0,
1/(h[1]*h[3])^2, 0, 0, 0, 1/(h[2]*h[3])^2, 0, 0, 3/h[3]^4, 0, 1/(h[3]*h[4])^2,
0, 0, 0, 0, 0, 0, 0, 0, 1/(h[3]*h[4])^2, 0,
1/(h[1]*h[4])^2, 0, 0, 0, 1/(h[2]*h[4])^2, 0, 0, 1/(h[3]*h[4])^2, 0, 3/h[4]^4),
nrow=10, ncol=10)
Sig2.mat.inv <- chol2inv(chol(Sig2.mat))
for (i1 in 1:gridsize[1])
for (i2 in 1:gridsize[2])
for (i3 in 1:gridsize[3])
for (i4 in 1:gridsize[4])
if (SigESS[i1,i2,i3,i4])
{
Sig2.inv12 <- sqrt(1/Sig2.scalar[i1,i2,i3,i4]) *
matrix.sqrt(Sig2.mat.inv)
fhat.temp <- Sig2.inv12 %*%
c(fhat2000[i1,i2,i3,i4], fhat1100[i1,i2,i3,i4],
fhat1010[i1,i2,i3,i4], fhat1001[i1,i2,i3,i4],
fhat0200[i1,i2,i3,i4], fhat0110[i1,i2,i3,i4],
fhat0101[i1,i2,i3,i4], fhat0020[i1,i2,i3,i4],
fhat0011[i1,i2,i3,i4], fhat0002[i1,i2,i3,i4])
D2.mat <-
matrix(c(fhat2000[i1,i2,i3,i4], fhat1100[i1,i2,i3,i4], fhat1010[i1,i2,i3,i4], fhat1001[i1,i2,i3,i4],
fhat1100[i1,i2,i3,i4], fhat0200[i1,i2,i3,i4], fhat0110[i1,i2,i3,i4], fhat0101[i1,i2,i3,i4],
fhat1010[i1,i2,i3,i4], fhat0110[i1,i2,i3,i4], fhat0020[i1,i2,i3,i4], fhat0011[i1,i2,i3,i4],
fhat1001[i1,i2,i3,i4], fhat0101[i1,i2,i3,i4], fhat0011[i1,i2,i3,i4], fhat0002[i1,i2,i3,i4]),
nrow=4)
WaldCurv[i1,i2,i3,i4] <- sum(fhat.temp^2)
lambda <- eigen(D2.mat, symmetric=TRUE, only.values=TRUE)$values
local.mode[i1,i2,i3,i4] <- all(lambda < 0)
}
}
}
## multiple hypothesis testing - based on Hochberg's method
## - modified Bonferroni method using ordered p-values
## test statistic for gradient
if (grad)
{
pval.Grad <- 1 - pchisq(WaldGrad, d)
pval.Grad.ord <- pval.Grad[order(pval.Grad)]
num.test <- sum(!is.na(pval.Grad.ord))
if (num.test>=1)
num.test.seq <- c(1:num.test, rep(NA, prod(gridsize) - num.test))
else
num.test.seq <- rep(NA, prod(gridsize))
reject.nonzero <- ((pval.Grad.ord <= signifLevel/(num.test + 1 - num.test.seq)) &
(pval.Grad.ord > 0))
reject.nonzero.ind <- which(reject.nonzero)
## p-value == 0 => reject null hypotheses automatically
SignifGrad <- array(FALSE, dim=gridsize)
SignifGrad[which(pval.Grad==0, arr.ind=TRUE)] <- TRUE
## p-value > 0 then reject null hypotheses indicated in reject.nonzero.ind
for (i in reject.nonzero.ind)
SignifGrad[which(pval.Grad==pval.Grad.ord[i], arr.ind=TRUE)] <- TRUE
}
## test statistic for curvature
if (curv)
{
pval.Curv <- 1 - pchisq(WaldCurv, d*(d+1)/2)
pval.Curv.ord <- pval.Curv[order(pval.Curv)]
num.test <- sum(!is.na(pval.Curv.ord))
if (num.test>=1)
num.test.seq <- c(1:num.test, rep(NA, prod(gridsize) - num.test))
else
num.test.seq <- rep(NA, prod(gridsize))
reject.nonzero <- ((pval.Curv.ord <= signifLevel/(num.test + 1 - num.test.seq)) &(pval.Curv.ord > 0))
reject.nonzero.ind <- which(reject.nonzero)
SignifCurv <- array(FALSE, dim=gridsize)
## p-value == 0 => reject null hypotheses automatically
SignifCurv[which(pval.Curv==0, arr.ind=TRUE)] <- TRUE
## p-value > 0 then reject null hypotheses indicated in reject.nonzero.ind
for (i in reject.nonzero.ind)
SignifCurv[which(pval.Curv==pval.Curv.ord[i], arr.ind=TRUE)] <- TRUE
if (neg.curv.only) SignifCurv <- SignifCurv & local.mode
}
if (grad & !curv)
return(list(grad=SignifGrad))
else if (!grad & curv)
return(list(curv=SignifCurv))
else if (grad & curv)
return(list(grad=SignifGrad, curv=SignifCurv))
}
########## End of SignifFeatureRegion ##########
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.