predict.pibblefit: Predict response from new data

View source: R/fidofit_methods.R

predict.pibblefitR Documentation

Predict response from new data

Description

Predict response from new data

Usage

## S3 method for class 'pibblefit'
predict(
  object,
  newdata = NULL,
  response = "LambdaX",
  size = NULL,
  use_names = TRUE,
  summary = FALSE,
  iter = NULL,
  from_scratch = FALSE,
  ...
)

Arguments

object

An object of class pibblefit

newdata

An optional matrix for which to evaluate predictions. If NULL (default), the original data of the model is used.

response

Options = "LambdaX":Mean of regression, "Eta", "Y": counts

size

the number of counts per sample if response="Y" (as vector or matrix), default if newdata=NULL and response="Y" is to use colsums of m$Y. Otherwise uses median colsums of m$Y as default. If passed as a matrix should have dimensions ncol(newdata) x iter.

use_names

if TRUE apply names to output

summary

if TRUE, posterior summary of predictions are returned rather than samples

iter

number of iterations to return if NULL uses object$iter

from_scratch

should predictions of Y come from fitted Eta or from predictions of Eta from posterior of Lambda? (default: false)

...

other arguments passed to summarise_posterior

Details

currently only implemented for pibblefit objects in coord_system "default" "alr", or "ilr".

Value

(if summary==FALSE) array D x N x iter; (if summary==TRUE) tibble with calculated posterior summaries

Examples

sim <- pibble_sim()
fit <- pibble(sim$Y, sim$X)
predict(fit)[,,1:2] # just show 2 samples

fido documentation built on June 22, 2024, 9:36 a.m.