Nothing
# #' Simulate Data and Priors for Maltipoo
# #'
# #' @inheritParams pibble_sim
# #' @param P number of variance components to simulate
# #'
# #' @return list
# #' @export
# #'
# #' @examples
# #' maltipoo_sim(10, 30, 30, 3, TRUE, FALSE)
# maltipoo_sim <- function(D=10, N=30, P=3,
# use_names=TRUE, true_priors=FALSE){
#
# Q <- N
#
# # Simulate Data
# Sigma <- diag(sample(1:8, D-1, replace=TRUE))
# Sigma[2, 3] <- Sigma[3,2] <- -1
#
# rU <- rWishart(P, Q+3, diag(Q))
# U <- matrix(0, P*Q, Q)
# Gamma_true <- matrix(0, Q, Q)
# VCScale_true <- rgamma(P, 1, 1)
# for (i in 1:P){
# U[((i-1)*Q+1):(i*Q), ] <- solve(rU[,,i])
# Gamma_true <- Gamma_true + VCScale_true[i]^2*U[((i-1)*Q+1):(i*Q), ]
# }
# rm(rU)
#
# Gamma_true <- diag(sqrt(rnorm(Q)^2))
# Theta <- matrix(0, D-1, Q)
# Phi <- Theta + t(chol(Sigma))%*%matrix(rnorm(Q*(D-1)), nrow=D-1)%*%chol(Gamma_true)
# X <- diag(Q)
# #X <- rbind(1, X)
# Eta <- Phi%*%X + t(chol(Sigma))%*%matrix(rnorm(N*(D-1)), nrow=D-1)
# Pi <- t(alrInv(t(Eta)))
# Y <- matrix(0, D, N)
# for (i in 1:N) Y[,i] <- rmultinom(1, sample(5000:10000), prob = Pi[,i])
# if (use_names){
# colnames(X) <- colnames(Y) <- paste0("s", 1:N)
# rownames(Y) <- paste0("c", 1:D)
# rownames(X) <- paste0("x", 1:Q)
# }
#
# # Priors
# if (true_priors){
# upsilon <- D+50
# Xi <- Sigma*(upsilon-D)
# } else {
# upsilon <- D
# Xi <- diag(D-1)
# }
#
# # Precompute
# K <- solve(Xi)
#
# return(list(Sigma=Sigma, Gamma_true=Gamma_true, D=D, N=N, Q=Q, Theta=Theta, Phi=Phi,
# X=X, Y=Y, Eta=Eta, upsilon=upsilon, Xi=Xi, K=K, U=U, VCScale_true=VCScale_true))
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.