Nothing
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"predictSE.Krig" <- function(object, x = NULL, cov = FALSE,
verbose = FALSE, ...) {
#
# name of covariance function
call.name <- object$cov.function.name
#
# default is to predict at data x's
if (is.null(x)) {
x <- object$x
}
x <- as.matrix(x)
if (verbose) {
print(x)
}
xraw <- x
# transformations of x values used in Krig
# NOTE knots are already scaled in Krig object
xc <- object$transform$x.center
xs <- object$transform$x.scale
x <- scale(x, xc, xs)
#
# scaled unique observation locations.
xM <- object$xM
# find marginal variance before transforming x.
temp.sd <- 1
if (verbose) {
print(temp.sd)
}
# Default is to use parameters in best.model
lambda <- object$best.model[1]
sigma2 <- object$best.model[3]
tau2 <- object$best.model[2]
nx <- nrow(xM)
wght.vec <- t(Krig.Amatrix(object, xraw, lambda, eval.correlation.model = FALSE,
...))
if (verbose) {
cat("wght.vector", fill = TRUE)
print(wght.vec)
}
#var( f0 - yhat)= var( f0) - cov( f0,yhat) - cov( yhat, f0) + cov( yhat)
# = temp0 - temp1 - t( temp1) + temp2
#
# if off diagonal weight matrix is passed then
# find inverse covariance matrix
# otherwise just create this quickly from diagonal weights
#
Wi <- Krig.make.Wi(object)$Wi
# find covariance of data
if (object$nondiag.W) {
Cov.y <- sigma2 * do.call(call.name, c(object$args, list(x1 = xM,
x2 = xM))) + tau2 * Wi
}
else {
# this is one case where keeping diagonal
# matrix as a vector will not work.
Cov.y <- sigma2 * do.call(call.name, c(object$args, list(x1 = xM,
x2 = xM))) + tau2 * diag(Wi)
}
if (!cov) {
# find diagonal elements of covariance matrix
# now find the three terms.
# note the use of an element by element multiply to only get the
# diagonal elements of the full
# prediction covariance matrix.
#
temp1 <- sigma2 * colSums(wght.vec * do.call(call.name,
c(object$args, list(x1 = xM, x2 = x))))
temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec))
#
# find marginal variances -- trival in the stationary case!
# Note that for the case of the general covariances
# as radial basis functions (RBFs) temp0 should be zero.
# Positivity results from the generalized divided difference
# properties of RBFs.
temp0 <- sigma2 * do.call(call.name, c(object$args, list(x1 = x,
marginal = TRUE)))
#
temp <- temp0 - 2 * temp1 + temp2
#
return(sqrt(temp * temp.sd^2))
}
else {
#
# find full covariance matrix
#
temp1 <- sigma2 * t(wght.vec) %*% do.call(call.name, c(object$args,
list(x1 = xM, x2 = x)))
#
temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec
#
temp0 <- sigma2 * do.call(call.name, c(object$args, list(x1 = x,
x2 = x)))
#
temp <- temp0 - t(temp1) - temp1 + temp2
temp <- t(t(temp) * temp.sd) * temp.sd
#
return(temp)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.