R/predictSEUsingKrigA.R

#
# fields  is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2024 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka,  douglasnychka@gmail.com,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
"predictSEUsingKrigA" <- function(object, x = NULL, cov = FALSE, 
    verbose = FALSE, ...) {
    #
    # name of covariance function
    call.name <- object$cov.function.name
    #
    # default is to predict at data x's
    if (is.null(x)) {
        x <- object$x
    }
    x <- as.matrix(x)
    if (verbose) {
        print(x)
    }
    xraw <- x
    # transformations of x values used in Krig
    # NOTE knots are already scaled in Krig object
    xc <- object$transform$x.center
    xs <- object$transform$x.scale
    x <- scale(x, xc, xs)
    #
    # scaled unique observation locations.
    xM <- object$xM
    # find marginal variance before transforming x.
    if (!is.na(object$sd.obj[1])) {
        temp.sd <- c(predict(object$sd.obj, xraw))
    }
    else {
        temp.sd <- 1
    }
    # Default is to use parameters in best.model
    lambda <- object$best.model[1]
    sigma <- object$best.model[3]
    tau2 <- object$best.model[2]
    nx <- nrow(xM)
    wght.vec <- t(Krig.Amatrix(object, xraw, lambda, ...))
    if (verbose) {
        cat("wght.vector", fill = TRUE)
        print(wght.vec)
    }
    #var( f0 - yhat)=    var( f0) -  cov( f0,yhat) - cov( yhat, f0) +  cov( yhat)
    #               =      temp0  - temp1 - t( temp1)       + temp2
    #
    # if off diagonal weight matrix is passed then
    # find  inverse covariance matrix
    # otherwise just create this quickly from diagonal weights
    #
    Wi <- Krig.make.Wi(object)$Wi
    # find covariance of data
    if (object$nondiag.W) {
        Cov.y <- sigma * do.call(call.name, c(object$args, list(x1 = xM, 
            x2 = xM))) + tau2 * Wi
    }
    else {
        #     this is one case where keeping diagonal
        #     matrix as a vector will not work.
        Cov.y <- sigma * do.call(call.name, c(object$args, list(x1 = xM, 
            x2 = xM))) + tau2 * diag(Wi)
    }
    if (!cov) {
        # find diagonal elements of covariance matrix
        # now find the three terms.
        # note the use of an element by element multiply to only get the
        # diagonal elements of the full
        #  prediction covariance matrix.
        #
        temp1 <- sigma * colSums(wght.vec * do.call(call.name, 
            c(object$args, list(x1 = xM, x2 = x))))
        temp2 <- colSums(wght.vec * (Cov.y %*% wght.vec))
        #
        # find marginal variances -- trival in the stationary case!
        # Note that for the case of the general covariances
        # as radial basis functions (RBFs) temp0 should be zero.
        # Positivity results from the generalized divided difference
        # properties of RBFs.
        temp0 <- sigma * do.call(call.name, c(object$args, list(x1 = x, 
            marginal = TRUE)))
        #
        temp <- temp0 - 2 * temp1 + temp2
        #
        return(sqrt(temp * temp.sd^2))
    }
    else {
        #
        # find full covariance matrix
        #
        temp1 <- sigma * t(wght.vec) %*% do.call(call.name, c(object$args, 
            list(x1 = xM, x2 = x)))
        #
        temp2 <- t(wght.vec) %*% Cov.y %*% wght.vec
        #
        temp0 <- sigma * do.call(call.name, c(object$args, list(x1 = x, 
            x2 = x)))
        #
        temp <- temp0 - t(temp1) - temp1 + temp2
        temp <- t(t(temp) * temp.sd) * temp.sd
        #
        return(temp)
    }
}

Try the fields package in your browser

Any scripts or data that you put into this service are public.

fields documentation built on June 28, 2024, 1:06 a.m.