Nothing
#' Generalized Pareto Distribution with Known Location Parameter, Predictions Based on a Calibrating Prior
#'
#' @inherit man description author references seealso return
#' @inheritParams man
#'
#' @inheritSection man Optional Return Values
#' @inheritSection man Optional Return Values (EVT models only)
#' @inheritSection man Optional Return Values (some EVT models only)
# #' @inheritSection man Details (homogeneous models)
#' @inheritSection man Details (non-homogeneous models)
# #' @inheritSection man Details (analytic integration)
#' @inheritSection man Details (DMGS integration)
#' @inheritSection man Details (RUST)
#'
#' @details
#' The GP distribution has exceedcance distribution function
#' \deqn{S(x;\mu,\sigma,\xi) =
#' \begin{cases}
#' {\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]}^{-1/\xi} & \text{if $\xi \ne 0$}\\
#' \exp{\left(-\frac{x-\mu}{\sigma}\right)} & \text{if $\xi=0$}
#' \end{cases}}
#' where
#' \eqn{x} is the random variable and
#' \eqn{\mu,\sigma>0,\xi} are the parameters.
#'
#' The calibrating prior we use is given by
#' \deqn{\pi(\mu,\sigma,\xi) \propto \frac{1}{\sigma}}
#' as given in Jewson et al. (2025).
#'
#' The code will stop with an error if the
#' input data gives a maximum likelihood
#' value for the shape parameter that lies outside the range \code{(minxi,maxxi)},
#' since outside this range there may be numerical problems.
#' Such values seldom occur
#' in real observed data for maxima.
#'
#' @example man/examples/example_120_gpd_k1.R
#'
#' @name gpd_k1_cp
NULL
#' @rdname gpd_k1_cp
#' @inheritParams man
#' @export
#'
qgpd_k1_cp=function(x,p=seq(0.1,0.9,0.1),kloc=0,ics=c(0,0),
fd1=0.01,d2=0.01,fdalpha=0.01,customprior=0,
minxi=-0.45,maxxi=2.0,
means=FALSE,waicscores=FALSE,extramodels=FALSE,
pdf=FALSE,dmgs=TRUE,rust=FALSE,nrust=100000,debug=FALSE,aderivs=TRUE){
#
# 1 intro
#
stopifnot(is.finite(x),!is.na(x),is.finite(p),!is.na(p),p>0,p<1,length(ics)==2,!x<0)
alpha=1-p
nx=length(x)
nalpha=length(alpha)
if(pdf){
dalpha=pmin(fdalpha*alpha,fdalpha*(1-alpha))
alpham=alpha-dalpha
alphap=alpha+dalpha
}
#
# 2 ml param estimate
#
ics=gpd_k1_setics(x,ics)
opt1=optim(ics,gpd_k1_loglik,x=x,kloc=kloc,control=list(fnscale=-1))
v1hat=opt1$par[1]
v2hat=opt1$par[2]
ml_params=c(v1hat,v2hat)
# gpd_k1_checkmle(ml_params,kloc,minxi,maxxi)
if(debug)message(" v1hat,v2hat=",v1hat,v2hat)
if((abs(v2hat)>=1)||(v2hat>30)){revert2ml=TRUE}else{revert2ml=FALSE}
#
# 3 aic
#
ml_value=opt1$val
maic=make_maic(ml_value,nparams=2)
#
# 4 calc ml quantiles and densities (vectorized over alpha)
#
ml_quantiles=extraDistr::qgpd((1-alpha),mu=kloc,sigma=v1hat,xi=v2hat)
if(v2hat<0){
ml_max=kloc-v1hat/v2hat
} else {
ml_max=Inf
}
fhat=extraDistr::dgpd(ml_quantiles,mu=kloc,sigma=v1hat,xi=v2hat)
#
# dmgs
#
standard_errors="dmgs not selected"
flat_quantiles="dmgs not selected"
rh_ml_quantiles="dmgs not selected"
cp_quantiles="dmgs not selected"
rh_flat_quantiles="dmgs not selected"
jp_quantiles="dmgs not selected"
lp_quantiles="dmgs not selected"
lp2_quantiles="dmgs not selected"
dpi_quantiles="dmgs not selected"
ru_quantiles="dmgs not selected"
ml_pdf="dmgs not selected"
cp_pdf="dmgs not selected"
rh_flat_pdf="dmgs not selected"
waic1="dmgs not selected"
waic2="dmgs not selected"
ml_mean="dmgs not selected"
flat_mean="dmgs not selected"
rh_mean="dmgs not selected"
rh_flat_mean="dmgs not selected"
rh_ml_mean="dmgs not selected"
cp_mean="dmgs not selected"
cp_method="dmgs not selected"
jp_mean="dmgs not selected"
if((dmgs)&&(!revert2ml)){
#
# 5 alpha pdf stuff
#
if(pdf){
ml_quantilesm=extraDistr::qgpd((1-alpham),mu=kloc,sigma=v1hat,xi=v2hat)
ml_quantilesp=extraDistr::qgpd((1-alphap),mu=kloc,sigma=v1hat,xi=v2hat)
fhatm=extraDistr::dgpd(ml_quantilesm,mu=kloc,sigma=v1hat,xi=v2hat)
fhatp=extraDistr::dgpd(ml_quantilesp,mu=kloc,sigma=v1hat,xi=v2hat)
}
if(debug)message(" ml_quantiles=",ml_quantiles)
#
# 6 expected information matrix and related (for Jeffreys prior)
#
if(debug)message(" call gpd.infomat")
if(extramodels|means){
gg=gpd.infomat(c(v1hat,v2hat),dat=c(1),method=c("exp")) #faster than num (seems to fail when v3hat=0.4 though)
ggi=solve(gg)
detg=det(gg)
ggd=gpd_k1_ggd_mev(v1hat,fd1,v2hat,d2) #is faster than num
}
#
# 7 ldd (two versions)
#
if(debug)message(" calculate ldd")
if(aderivs) ldd=gpd_k1_ldda(x,v1hat,v2hat,kloc)
if(!aderivs)ldd=gpd_k1_ldd(x,v1hat,fd1,v2hat,d2,kloc)
lddi=solve(ldd)
standard_errors=make_se(nx,lddi)
if(extramodels|means){
if(aderivs) ldd_k13=gpd_k13_ldda(x,v1hat,v2hat,kloc)
if(!aderivs)ldd_k13=gpd_k13_ldd(x,v1hat,fd1,v2hat,kloc)
lddi_k13=solve(ldd_k13)
}
if(debug)message(" ldd=",ldd)
if(extramodels&means&debug)message(" ldd_k13=",ldd_k13)
#
# 8 lddd (two versions)
#
if(debug)message(" calculate lddd")
if(aderivs) lddd=gpd_k1_lddda(x,v1hat,v2hat,kloc)
if(!aderivs)lddd=gpd_k1_lddd(x,v1hat,fd1,v2hat,d2,kloc)
if(extramodels|means){
if(aderivs) lddd_k13=gpd_k13_lddda(x,v1hat,v2hat,kloc=kloc)
if(!aderivs)lddd_k13=gpd_k13_lddd(x,v1hat,fd1,v2hat,kloc=kloc)
}
#
# 9 mu1 (two versions)
#
if(aderivs) mu1=gpd_k1_mu1fa(alpha,v1hat,v2hat,kloc)
if(!aderivs)mu1=gpd_k1_mu1f(alpha,v1hat,fd1,v2hat,d2,kloc)
if(extramodels|means){
if(aderivs )mu1_k13=gpd_k13_mu1fa(alpha,v1hat,v2hat,kloc)
if(!aderivs)mu1_k13=gpd_k13_mu1f(alpha,v1hat,fd1,v2hat,kloc)
}
if(pdf){
if(aderivs){
mu1m=gpd_k1_mu1fa(alpham,v1hat,v2hat,kloc)
mu1p=gpd_k1_mu1fa(alphap,v1hat,v2hat,kloc)
} else{
mu1m=gpd_k1_mu1f(alpham,v1hat,fd1,v2hat,d2,kloc)
mu1p=gpd_k1_mu1f(alphap,v1hat,fd1,v2hat,d2,kloc)
}
}
#
# 10 mu2 (two versions)
#
if(aderivs) mu2=gpd_k1_mu2fa(alpha,v1hat,v2hat,kloc)
if(!aderivs)mu2=gpd_k1_mu2f(alpha,v1hat,fd1,v2hat,d2,kloc)
if(extramodels|means){
if(aderivs) mu2_k13=gpd_k13_mu2fa(alpha,v1hat,v2hat,kloc)
if(!aderivs)mu2_k13=gpd_k13_mu2f(alpha,v1hat,fd1,v2hat,kloc)
}
if(pdf){
if(aderivs){
mu2m=gpd_k1_mu2fa(alpham,v1hat,v2hat,kloc)
mu2p=gpd_k1_mu2fa(alphap,v1hat,v2hat,kloc)
} else {
mu2m=gpd_k1_mu2f(alpham,v1hat,fd1,v2hat,d2,kloc)
mu2p=gpd_k1_mu2f(alphap,v1hat,fd1,v2hat,d2,kloc)
}
}
#
# 11 model 2: flat prior
#
if(extramodels|means){
lambdad_flat=c(0,0)
dq=dmgs(lddi,lddd,mu1,lambdad_flat,mu2,dim=2)
flat_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
flat_quantiles="extramodels not selected"
}
#
# 12 model 3: rh_ML (needs to use 1d version of Bayesian code, and ldd_k13,lddd_k13,mu1_k13,mu2_k13)
#
if(extramodels|means){
lambdad_rh_mle=c(-1/v1hat)
dq=dmgs(lddi_k13,lddd_k13,mu1_k13,lambdad_rh_mle,mu2_k13,dim=1)
rh_ml_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
rh_ml_quantiles="extramodels not selected"
}
#
# 13 model 4: rh_Flat with flat prior on shape (needs to use 3d version of Bayesian code)
#
lambdad_rh_flat=c(-1/v1hat,0)
dq=dmgs(lddi,lddd,mu1,lambdad_rh_flat,mu2,dim=2)
rh_flat_quantiles=ml_quantiles+dq/(nx*fhat)
if(pdf){
dqm=dmgs(lddi,lddd,mu1m,lambdad_rh_flat,mu2m,dim=2)
dqp=dmgs(lddi,lddd,mu1p,lambdad_rh_flat,mu2p,dim=2)
quantilesm=ml_quantilesm+dqm/(nx*fhatm)
quantilesp=ml_quantilesp+dqp/(nx*fhatp)
ml_pdf=fhat
rh_flat_pdf=-(alphap-alpham)/(quantilesp-quantilesm)
} else{
ml_pdf=fhat
rh_flat_pdf="pdf not selected"
}
#
# 14 model 5: JP, calculated from g, using Jacobi's formula, in a function in the generic library
#
if(extramodels|means){
lambdad_jp=jpf2p(ggd,detg,ggi) #this is jp
dq=dmgs(lddi,lddd,mu1,lambdad_jp,mu2,dim=2)
jp_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
jp_quantiles="extramodels not selected"
}
#
# 15 model 6: Laplace's method
#
if(extramodels|means){
lambdad_lp=c(0,0)
lddd_lp=array(0,c(2,2,2))
dq=dmgs(lddi,lddd_lp,mu1,lambdad_lp,mu2,dim=2)
lp_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
lp_quantiles="extramodels not selected"
}
#
# 16 model 7: Laplace's method, but with 1/sigma prior
#
if(extramodels|means){
lambdad_lp2=c(-1/v1hat,0)
lddd_lp2=array(0,c(2,2,2))
dq=dmgs(lddi,lddd_lp2,mu1,lambdad_lp2,mu2,dim=2)
lp2_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
lp2_quantiles="extramodels not selected"
}
#
# 17 model 8: user defined xi gradient of log prior
#
if(extramodels|means){
lambdad_dpi=c(-1/v1hat,customprior)
dq=dmgs(lddi,lddd,mu1,lambdad_dpi,mu2,dim=2)
dpi_quantiles=ml_quantiles+dq/(nx*fhat)
} else {
dpi_quantiles="extramodels not selected"
}
#
# 18 means
#
means=gpd_k1_means(means,ml_params,lddi,lddi_k13,lddd,lddd_k13,
lambdad_flat,lambdad_rh_mle,lambdad_rh_flat,lambdad_jp,nx,dim=2,kloc)
ml_mean =means$ml_mean
flat_mean =means$flat_mean
rh_ml_mean =means$rh_ml_mean
rh_flat_mean =means$rh_flat_mean
jp_mean =means$jp_mean
#
# 19 waicscores
#
waic=gpd_k1_waic(waicscores,x,v1hat,fd1,v2hat,d2,kloc,lddi,lddd,
lambdad_rh_flat,aderivs)
waic1=waic$waic1
waic2=waic$waic2
#
# 21 rust
#
ru_quantiles="rust not selected"
if(rust){
rustsim=rgpd_k1_cp(nrust,x,kloc,rust=TRUE,mlcp=FALSE)
ru_quantiles=makeq(rustsim$ru_deviates,p)
}
} else {
flat_quantiles=ml_quantiles
rh_ml_quantiles=ml_quantiles
rh_flat_quantiles=ml_quantiles
ru_quantiles=ml_quantiles
jp_quantiles=ml_quantiles
lp_quantiles=ml_quantiles
lp2_quantiles=ml_quantiles
dpi_quantiles=ml_quantiles
rh_flat_pdf=ml_pdf
flat_mean=ml_mean
rh_ml_mean=ml_mean
rh_flat_mean=ml_mean
jp_mean=ml_mean
} #end of if(dmgs)
list( ml_params=ml_params,
ml_value=ml_value,
# ldd=ldd,
# lddi=lddi,
standard_errors=standard_errors,
ml_quantiles=ml_quantiles,
ml_max=ml_max,
revert2ml=revert2ml,
flat_quantiles=flat_quantiles,
rh_ml_quantiles=rh_ml_quantiles,
cp_quantiles=rh_flat_quantiles,
ru_quantiles=ru_quantiles,
jp_quantiles=jp_quantiles,
lp_quantiles=lp_quantiles,
lp2_quantiles=lp2_quantiles,
dpi_quantiles=dpi_quantiles,
ml_pdf=ml_pdf,
rh_flat_pdf=rh_flat_pdf,
maic=maic,
waic1=waic1,
waic2=waic2,
ml_mean=ml_mean,
flat_mean=flat_mean,
rh_ml_mean=rh_ml_mean,
cp_mean=rh_flat_mean,
jp_mean=jp_mean,
cp_method=crhpflat_dmgs_cpmethod())
}
#' @rdname gpd_k1_cp
#' @inheritParams man
#' @export
rgpd_k1_cp=function(n,x,kloc=0,ics=c(0,0),fd1=0.01,d2=0.01,
minxi=-0.45,maxxi=2.0,
extramodels=FALSE,rust=FALSE,mlcp=TRUE,debug=FALSE,aderivs=TRUE){
# stopifnot(is.finite(n),!is.na(n),is.finite(x),!is.na(x),length(ics)==2,!x<0)
stopifnot(is.finite(x),!is.na(x),length(ics)==2,!x<0)
ml_params="mlcp not selected"
ml_deviates="mlcp not selected"
flat_deviates="mlcp not selected"
rh_ml_deviates="mlcp not selected"
jp_deviates="mlcp not selected"
ru_deviates="rust not selected"
cp_deviates="rust not selected"
if(mlcp){
q=qgpd_k1_cp(x,runif(n),kloc=kloc,ics=ics,fd1=fd1,d2=d2,
extramodels=extramodels,aderivs=aderivs)
ml_params=q$ml_params
ml_deviates=q$ml_quantiles
flat_deviates=q$flat_quantiles
rh_ml_deviates=q$rh_ml_quantiles
ru_deviates=q$ru_quantiles
cp_deviates=q$cp_quantiles
jp_deviates=q$jp_quantiles
}
if(rust){
th=tgpd_k1_cp(n,x)$theta_samples
ru_deviates=numeric(0)
for (i in 1:n){
ru_deviates[i]=rgpd(1,mu=kloc,sigma=th[i,1],xi=th[i,2])
}
}
op=list(ml_params=ml_params,
ml_deviates=ml_deviates,
flat_deviates=flat_deviates,
rh_ml_deviates=rh_ml_deviates,
cp_deviates=cp_deviates,
ru_deviates=ru_deviates,
jp_deviates=jp_deviates,
cp_method=crhpflat_dmgs_cpmethod())
return(op)
}
#' @rdname gpd_k1_cp
#' @inheritParams man
#' @export
dgpd_k1_cp=function(x,y=x,kloc=0,ics=c(0,0),fd1=0.01,d2=0.01,customprior=0,
minxi=-0.45,maxxi=2.0,extramodels=FALSE,
rust=FALSE,nrust=1000,debug=FALSE,aderivs=TRUE){
stopifnot(is.finite(x),!is.na(x),is.finite(y),!is.na(y),length(ics)==2,!x<0,!y<0)
ics=gpd_k1_setics(x,ics)
opt1=optim(ics,gpd_k1_loglik,x=x,kloc=kloc,control=list(fnscale=-1))
v1hat=opt1$par[1]
v2hat=opt1$par[2]
if(v2hat<=(-1)){revert2ml=TRUE}else{revert2ml=FALSE}
ml_params=c(v1hat,v2hat)
gpd_k1_checkmle(ml_params,kloc,minxi,maxxi)
dd=dgpdsub(x=x,y=y,ics=ics,fd1=fd1,d2=d2,kloc,customprior,
minxi,maxxi,extramodels=extramodels,aderivs=aderivs)
ru_pdf="rust not selected"
if(rust&&(!revert2ml)){
th=tgpd_k1_cp(nrust,x)$theta_samples
ru_pdf=numeric(length(y))
for (ir in 1:nrust){
ru_pdf=ru_pdf+dgpd(y,mu=kloc,sigma=th[ir,1],xi=th[ir,2])
}
ru_pdf=ru_pdf/nrust
} else {
ru_pdf=dd$ml_pdf
}
op=list(
ml_params=dd$ml_params,
ml_pdf=dd$ml_pdf,
revert2ml=revert2ml,
# flat_pdf=dd$flat_pdf,
# rh_ml_pdf=dd$rh_ml_pdf,
# cp_pdf=dd$rh_flat_pdf,
# ru_pdf=ru_pdf,
# jp_pdf=dd$jp_pdf,
# dpi_pdf=dd$dpi_pdf,
ru_pdf=ru_pdf,
cp_method=nopdfcdfmsg())
return(op)
}
#' @rdname gpd_k1_cp
#' @inheritParams man
#' @export
pgpd_k1_cp=function(x,y=x,kloc=0,ics=c(0,0),fd1=0.01,d2=0.01,customprior=0,
minxi=-0.45,maxxi=2.0,extramodels=FALSE,
rust=FALSE,nrust=1000,debug=FALSE,aderivs=TRUE){
stopifnot(is.finite(x),!is.na(x),is.finite(y),!is.na(y),length(ics)==2,!x<0,!y<0)
ics=gpd_k1_setics(x,ics)
opt1=optim(ics,gpd_k1_loglik,x=x,kloc=kloc,control=list(fnscale=-1))
v1hat=opt1$par[1]
v2hat=opt1$par[2]
if(v2hat<=(-1)){revert2ml=TRUE}else{revert2ml=FALSE}
ml_params=c(v1hat,v2hat)
gpd_k1_checkmle(ml_params,kloc,minxi,maxxi)
dd=dgpdsub(x=x,y=y,ics=ics,fd1=fd1,d2=d2,kloc,customprior,
minxi,maxxi,extramodels=extramodels,aderivs=aderivs)
ru_cdf="rust not selected"
if(rust&&(!revert2ml)){
th=tgpd_k1_cp(nrust,x)$theta_samples
ru_cdf=numeric(length(y))
for (ir in 1:nrust){
ru_cdf=ru_cdf+pgpd(y,mu=kloc,sigma=th[ir,1],xi=th[ir,2])
}
ru_cdf=ru_cdf/nrust
} else {
ru_pdf=dd$ml_pdf
}
op=list(
ml_params=dd$ml_params,
ml_cdf=dd$ml_cdf,
revert2ml=revert2ml,
# flat_cdf=dd$flat_cdf,
# rh_ml_cdf=dd$rh_ml_cdf,
# cp_cdf=dd$rh_flat_cdf,
# ru_cdf=ru_cdf,
# jp_cdf=dd$jp_cdf,
# dpi_cdf=dd$dpi_cdf,
ru_cdf=ru_cdf,
cp_method=nopdfcdfmsg())
return(op)
}
#' @rdname gpd_k1_cp
#' @inheritParams man
#' @export
tgpd_k1_cp=function(n,x,kloc=0,ics=c(0,0),fd1=0.01,d2=0.01,extramodels=FALSE,debug=FALSE){
# stopifnot(is.finite(n),!is.na(n),is.finite(x),!is.na(x),length(ics)==2,!x<0)
stopifnot(is.finite(x),!is.na(x),length(ics)==2,!x<0)
ics=gpd_k1_setics(x,ics)
t=ru(gpd_k1_logf,x=x,kloc=kloc,n=n,d=2,init=ics)
list(theta_samples=t$sim_vals)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.