setFixest_estimation | R Documentation |
This function sets globally the default arguments of fixest estimations.
setFixest_estimation(
data = NULL,
panel.id = NULL,
fixef.rm = "perfect",
fixef.tol = 1e-06,
fixef.iter = 10000,
collin.tol = 1e-10,
lean = FALSE,
verbose = 0,
warn = TRUE,
combine.quick = NULL,
demeaned = FALSE,
mem.clean = FALSE,
glm.iter = 25,
glm.tol = 1e-08,
data.save = FALSE,
reset = FALSE
)
getFixest_estimation()
data |
A data.frame containing the necessary variables to run the model.
The variables of the non-linear right hand side of the formula are identified
with this |
panel.id |
The panel identifiers. Can either be: i) a one sided formula
(e.g. |
fixef.rm |
Can be equal to "perfect" (default), "singleton", "both" or "none". Controls which observations are to be removed. If "perfect", then observations having a fixed-effect with perfect fit (e.g. only 0 outcomes in Poisson estimations) will be removed. If "singleton", all observations for which a fixed-effect appears only once will be removed. Note, importantly, that singletons are removed in just one pass, there is no recursivity implemented. The meaning of "both" and "none" is direct. |
fixef.tol |
Precision used to obtain the fixed-effects. Defaults to |
fixef.iter |
Maximum number of iterations in fixed-effects algorithm (only in use for 2+ fixed-effects). Default is 10000. |
collin.tol |
Numeric scalar, default is |
lean |
Logical, default is |
verbose |
Integer. Higher values give more information. In particular, it can detail the number of iterations in the demeaning algorithm (the first number is the left-hand-side, the other numbers are the right-hand-side variables). |
warn |
Logical, default is |
combine.quick |
Logical. When you combine different variables to transform them
into a single fixed-effects you can do e.g. |
demeaned |
Logical, default is |
mem.clean |
Logical, default is |
glm.iter |
Number of iterations of the glm algorithm. Default is 25. |
glm.tol |
Tolerance level for the glm algorithm. Default is |
data.save |
Logical scalar, default is |
reset |
Logical scalar, default is |
The function getFixest_estimation
returns the currently set global defaults.
#
# Example: removing singletons is FALSE by default
#
# => changing this default
# Let's create data with singletons
base = iris
names(base) = c("y", "x1", "x2", "x3", "species")
base$fe_singletons = as.character(base$species)
base$fe_singletons[1:5] = letters[1:5]
res = feols(y ~ x1 + x2 | fe_singletons, base)
res_noSingle = feols(y ~ x1 + x2 | fe_singletons, base, fixef.rm = "single")
# New defaults
setFixest_estimation(fixef.rm = "single")
res_newDefault = feols(y ~ x1 + x2 | fe_singletons, base)
etable(res, res_noSingle, res_newDefault)
# Resetting the defaults
setFixest_estimation(reset = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.