Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----warning=FALSE, message=FALSE---------------------------------------------
library(flexFitR)
library(dplyr)
library(kableExtra)
library(ggpubr)
library(purrr)
## -----------------------------------------------------------------------------
data(dt_potato)
explorer <- explorer(dt_potato, x = DAP, y = Canopy, id = Plot)
## -----------------------------------------------------------------------------
names(explorer)
## ----fig.width= 8, fig.height=4, fig.alt="plot corr"--------------------------
p1 <- plot(explorer, type = "evolution", return_gg = TRUE, add_avg = TRUE)
p2 <- plot(explorer, type = "x_by_var", return_gg = TRUE)
ggarrange(p1, p2)
## ----echo=FALSE---------------------------------------------------------------
kable(mutate_if(explorer$summ_vars, is.numeric, round, 2))
## ----echo = FALSE, fig.width= 8, fig.alt="plot fn"----------------------------
plot_fn(
fn = "fn_lin_plat",
params = c(t1 = 40, t2 = 61.8, k = 100),
interval = c(0, 108),
color = "black",
base_size = 15
)
## ----warning=FALSE, message=FALSE---------------------------------------------
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
subset = c(166, 40)
)
mod_1
## ----fig.width= 8, fig.height=4, fig.alt="plot fit"---------------------------
plot(mod_1, id = c(166, 40))
kable(mod_1$param)
## -----------------------------------------------------------------------------
coef(mod_1)
## -----------------------------------------------------------------------------
confint(mod_1)
## -----------------------------------------------------------------------------
vcov(mod_1)
## -----------------------------------------------------------------------------
initials <- data.frame(
uid = c(166, 40),
t1 = c(70, 60),
t2 = c(40, 80),
k = c(100, 100)
)
## -----------------------------------------------------------------------------
kable(initials)
## -----------------------------------------------------------------------------
mod_2 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat",
parameters = initials,
subset = c(166, 40)
)
## ----fig.width= 8, fig.height=4, fig.alt="plot fit 2"-------------------------
plot(mod_2, id = c(166, 40))
kable(mod_2$param)
## -----------------------------------------------------------------------------
fixed_params <- list(k = "max(y)")
## -----------------------------------------------------------------------------
mod_3 <- dt_potato |>
modeler(
x = DAP,
y = Canopy,
grp = Plot,
fn = "fn_lin_plat",
parameters = c(t1 = 45, t2 = 80, k = 0.9),
fixed_params = fixed_params,
subset = c(166, 40)
)
## ----fig.width= 8, fig.height=4, fig.alt="plot fit 3"-------------------------
plot(mod_3, id = c(166, 40))
kable(mod_3$param)
## -----------------------------------------------------------------------------
rbind.data.frame(
mutate(mod_1$param, model = "1", .before = uid),
mutate(mod_2$param, model = "2", .before = uid),
mutate(mod_3$param, model = "3", .before = uid)
) |>
filter(uid %in% 166) |>
kable()
## -----------------------------------------------------------------------------
comparison <- performance(mod_1, mod_2, mod_3)
comparison |>
filter(uid %in% 166) |>
kable()
## ----fig.alt="plot fit 4"-----------------------------------------------------
plot(comparison, id = 166)
## -----------------------------------------------------------------------------
# Point Prediction
predict(mod_1, x = 45, type = "point", id = 166) |> kable()
# AUC Prediction
predict(mod_1, x = c(0, 108), type = "auc", id = 166) |> kable()
# Function of the parameters
predict(mod_1, formula = ~ t2 - t1, id = 166) |> kable()
## ----eval= FALSE--------------------------------------------------------------
# mod <- dt_potato |>
# modeler(
# x = DAP,
# y = Canopy,
# grp = Plot,
# fn = "fn_lin_plat",
# parameters = c(t1 = 45, t2 = 80, k = 0.9),
# fixed_params = list(k = "max(y)"),
# options = list(progress = TRUE, parallel = TRUE, workers = 5)
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.