Nothing
#' Faster Stress Function
#'
#' \code{fasterstress} calculates stochastic normalized stress.
#' Neither data nor distances based on z are optimally scaled.
#'
#' @param data an n by m multivariate data matrix.
#' @param z n by p matrix with coordinates.
#' @param nsamples number of samples
#' @param samplesize sample size
#'
#' @return n.stress normalized stress, mean over samples and observations
#' @return se standard error of se, standard deviation over samples
#'
#' @references agrafiotis, and others, and busing
#'
#' @examples
#' n <- 10000
#' m <- 10
#' data <- matrix( runif( n * m ), n, m )
#' p <- 2
#' zinit <- matrix( runif( n * p ), n, p )
#' # r <- fastermds( data = data, p = p, z = zinit )
#' # s <- fasterstress( data = data, z = r )
#'
#' @author Frank M.T.A. Busing
#'
#' @importFrom stats runif
#' @export
#' @useDynLib fmds, .registration = TRUE
fasterstress <- function( data = NULL, # multivariate data matrix
z = NULL, # coordinate matrix
nsamples = 100, # number of samples
samplesize = 30 ) # sample size
{
seed <- as.integer( runif( 1, 1, as.integer( .Machine$integer.max ) ) )
data <- as.matrix( data )
n <- nrow( data )
m <- ncol( data )
z <- as.matrix( z )
p <- ncol( z )
stress <- 0.0
se <- 0.0
result <- ( .C( "Cfasterstress", n=as.integer(n), m=as.integer(m), data=as.double(t(data)), p=as.integer(p), z=as.double(t(z)), nsamples=as.integer(nsamples), samplesize=as.integer(samplesize), seed=as.integer(seed), stress=as.double(stress), se=as.double(se), PACKAGE = "fmds" ) )
return( list( n.stress = result$stress, se = result$se, ci.95 = c( result$stress - 1.96 * result$se, result$stress + 1.96 * result$se ) ) )
} # fasterstress
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.