Nothing
## meshassessment.R
##
## Copyright (C) 2016, 2018, 2025, Finn Lindgren
#' Interactive mesh building and diagnostics
#'
#' Assess the finite element approximation errors in a mesh for interactive R
#' sessions.
#'
#' @param mesh An [fm_mesh_2d] object
#' @param spatial.range numeric; the spatial range parameter to use for the
#' assessment
#' @param alpha numeric; A valid [fm_matern_precision()] `alpha` parameter
#' @param dims 2-numeric; the grid size
#' @returns An `sf` object with gridded mesh assessment information
#' @author Finn Lindgren \email{finn.lindgren@@gmail.com}
#' @seealso [fm_mesh_2d()], [fm_rcdt_2d]
#' @examples
#'
#' bnd <- fm_segm(cbind(
#' c(0, 10, 10, 0, 0),
#' c(0, 0, 10, 10, 0)
#' ), is.bnd = TRUE)
#' mesh <- fm_rcdt_2d_inla(boundary = bnd, max.edge = 1)
#' out <- fm_assess(mesh, spatial.range = 3, alpha = 2)
#'
#' @export
fm_assess <- function(mesh, spatial.range, alpha = 2,
dims = NULL) {
mesh.edgelengths <- function(mesh, proj) {
i <- c()
val <- c()
num <- c()
tri_idx <- rbind(c(1, 2), c(2, 3), c(3, 1))
for (k in 1:3) {
ti1 <- tri_idx[k, 1]
ti2 <- tri_idx[k, 2]
len <- Matrix::rowSums((mesh$loc[mesh$graph$tv[, ti2], ] -
mesh$loc[mesh$graph$tv[, ti1], ])^2)^0.5
i <- c(i, mesh$graph$tv[, ti1], mesh$graph$tv[, ti2])
val <- c(val, rep(as.vector(len), times = 2))
num <- c(num, rep(1, 2 * length(as.vector(len))))
}
avg_len <-
as.vector(Matrix::sparseMatrix(i = i, j = rep(1, length(i)), x = val)) /
as.vector(Matrix::sparseMatrix(i = i, j = rep(1, length(i)), x = num))
proj_len <- as.vector(proj$proj$A %*% avg_len)
proj_len[!proj$proj$ok] <- NA
proj_len
}
mesh.proj <- function(mesh, dims) {
fm_evaluator(mesh, dims = dims)
}
mesh.spde <- function(mesh, alpha) {
list(
mesh = mesh,
alpha = alpha,
prior.range = c(1, 0.5),
prior.sigma = c(1, 0.5)
)
}
mesh.Q <- function(spde, spatial.range) {
fm_matern_precision(spde$mesh,
alpha = spde$alpha,
rho = spatial.range,
sigma = 1
)
}
mesh.S <- function(Q) {
fm_qinv(Q)
}
mesh.sd <- function(proj, S) {
v <- Matrix::rowSums(proj$proj$A * (proj$proj$A %*% S))
v[!proj$proj$ok] <- NA
array(v^0.5, dim = proj$lattice$dims)
}
mesh.sd.deviation.approx <- function(proj, S, sd0) {
val <- proj$proj$A %*% (
as.vector(Matrix::t(proj$proj$A[proj$proj$ok, , drop = FALSE]) %*%
as.vector(sd0)[proj$proj$ok]) /
Matrix::colSums(proj$proj$A[proj$proj$ok, , drop = FALSE]))
val[!proj$proj$ok] <- NA
array(
1 + (as.vector(sd0) - val),
dim = proj$lattice$dims
)
}
mesh.sd.bound <- function(proj, S) {
fm_evaluate(proj, field = Matrix::diag(S)^0.5)
}
if (!fm_manifold(mesh, "R2")) {
warning("fm_assess has only been tested on flat 2D manifolds.")
}
d <- fm_manifold_dim(mesh)
if (is.null(dims)) {
dims <- rep(ceiling(1e5^(1 / d)), d)
}
spde <- mesh.spde(mesh = mesh, alpha = alpha)
Q <- mesh.Q(spde = spde, spatial.range = spatial.range)
S <- mesh.S(Q = Q)
proj <- mesh.proj(mesh = mesh, dims = dims)
sd0 <- mesh.sd(proj = proj, S = S)
sd.deviation <- mesh.sd.deviation.approx(proj = proj, S = S, sd0 = sd0)
edgelengths <- mesh.edgelengths(mesh, proj)
sd.bound <- mesh.sd.bound(proj, S)
if (inherits(mesh, "fm_mesh_2d")) {
out <- tibble::tibble(
x = proj$lattice$loc[, 1],
y = proj$lattice$loc[, 2],
sd = as.vector(sd0),
sd.dev = as.vector(sd.deviation),
sd.bound = as.vector(sd.bound),
edge.len = edgelengths
)
out <- sf::st_as_sf(out, coords = c("x", "y"), crs = fm_crs(mesh))
} else {
out <- tibble::tibble(
loc = proj$lattice$loc,
sd = as.vector(sd0),
sd.dev = as.vector(sd.deviation),
sd.bound = as.vector(sd.bound),
edge.len = edgelengths
)
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.