# R/boot_simulated_cat_bin.R In foodingraph: Food Network Inference and Visualization

#### Documented in boot_simulated_cat_bin

```#' Confidence-interval bootstraps on simulated independent variables
#'
#' Create a defined number of simulated independent random variables of
#' a given \code{size} according to \code{type} : 2 ordinal variables,
#' 2 binary variables, 1 binary and 1 ordinal variable.
#' A number of bootstraps are then performed on the sample to calculate
#' a confidence interval of the bootstrap distribution of the chosen method:
#' mutual information or the maximal information coefficient.
#' The percentile method is used to calculate this interval.
#'
#' @param type : the type of the simulated variables: \code{cat} is for
#'  2 ordinal variables, \code{bin} is for 2 binary variables, \code{bincat}
#'  is for 1 binary and 1 ordinal variable.
#' @param method : the method used to calculate the association : mutual
#' information (\code{mi}), or the maximal information coefficient (\code{mic}).
#' @param simu : the number of simulated pairs of variables. For each pair,
#' the confidence-interval bootstrap is calculated from the bootstrap distribution
#' of the MI/MIC of between the two pairs. At the end of the program, the mean of
#' the chosen percentile is given. Default is 10.
#' @param boots : the number of bootstraps per simulation. Default is 5000.
#' @param size : the size of the sample. Default is 500.
#' @param percentile : the percentile kept. Default is 0.99 (the 99th percentile).
#'
#' @return The mean of the percentile values.
#'
#' @examples
#'
#' boot_simulated_cat_bin("cat", "mic", 2, 500)
#' @references
#' Reshef et al. (2011) <doi:10.1126/science.1205438>
#'
#' Meyer et al. (2008) <doi:10.1186/1471-2105-9-461>
#' @importFrom stats rbinom rmultinom runif
#' @importFrom minerva cstats
#' @export
boot_simulated_cat_bin <- function(type = c("cat", "bin", "bincat"),
method = c("mic", "mi"),
simu = 10,
boots = 5000,
size = 500,
percentile = 0.99) {
type <- match.arg(type)
method <- match.arg(method)

if (type == "cat") {
var1 <- rmultinom(1, size, runif(size))
var2 <- rmultinom(1, size, runif(size))
} else if (type == "bin") {
var1 <- rbinom(size, 1, runif(1))
var2 <- rbinom(size, 1, runif(1))
} else {
var1 <- rmultinom(1, size, runif(size))
var2 <- rbinom(size, 1, runif(1))
}

message(paste("Confidence-interval bootstrap on simulated independent variables of type:", type))
message(paste("Number of simulations:", simu))
message(paste("Number of bootstraps per simulations:", boots))
message(paste("Sample size for each simulation:", size))

message("Contigency table of the simulated data:")
message(table(var1, var2))

res_percentile <- rep(NA, simu)
for (simu_no in 1:simu) {
estimate_star <- rep(NA, boots)
for (boot_no in 1:boots) {
boot_sample1 <- sample(var1, size, replace = TRUE)
boot_sample2 <- sample(var2, size, replace = TRUE)

if (method == "mi") {
estimate_star[boot_no] <- infotheo::mutinformation(boot_sample1, boot_sample2, method = "mm")
} else {
estimate_star[boot_no] <- cstats(as.matrix(boot_sample1), as.matrix(boot_sample2))[,3]
}
}
res_percentile[simu_no] <- quantile(estimate_star, percentile)
message(paste("Simulation", simu_no, ":", res_percentile[simu_no]))
}

mean_percentile <- mean(res_percentile)
message(paste("Mean of the percentiles:", mean_percentile))
mean_percentile
}
```

## Try the foodingraph package in your browser

Any scripts or data that you put into this service are public.

foodingraph documentation built on Oct. 6, 2019, 5:06 p.m.