Nothing
# Diebold-Mariano test. Modified from code by Adrian Trapletti.
# Then adapted by M. Yousaf Khan for better performance on small samples
#' Diebold-Mariano test for predictive accuracy
#'
#' The Diebold-Mariano test compares the forecast accuracy of two forecast
#' methods.
#'
#' This function implements the modified test proposed by Harvey, Leybourne and
#' Newbold (1997). The null hypothesis is that the two methods have the same
#' forecast accuracy. For \code{alternative="less"}, the alternative hypothesis
#' is that method 2 is less accurate than method 1. For
#' \code{alternative="greater"}, the alternative hypothesis is that method 2 is
#' more accurate than method 1. For \code{alternative="two.sided"}, the
#' alternative hypothesis is that method 1 and method 2 have different levels
#' of accuracy. The long-run variance estimator can either the
#' auto-correlation estimator \code{varestimator = "acf"}, or the estimator based
#' on Bartlett weights \code{varestimator = "bartlett"} which ensures a positive estimate.
#' Both long-run variance estimators are proposed in Diebold and Mariano (1995).
#'
#' @param e1 Forecast errors from method 1.
#' @param e2 Forecast errors from method 2.
#' @param alternative a character string specifying the alternative hypothesis,
#' must be one of \code{"two.sided"} (default), \code{"greater"} or
#' \code{"less"}. You can specify just the initial letter.
#' @param h The forecast horizon used in calculating \code{e1} and \code{e2}.
#' @param power The power used in the loss function. Usually 1 or 2.
#' @param varestimator a character string specifying the long-run variance estimator.
#' Options are \code{"acf"} (default) or \code{"bartlett"}.
#' @return A list with class \code{"htest"} containing the following
#' components:
#' \item{statistic}{the value of the DM-statistic.}
#' \item{parameter}{the forecast horizon and loss function power used in the test.}
#' \item{alternative}{a character string describing the alternative hypothesis.}
#' \item{varestimator}{a character string describing the long-run variance estimator.}
#' \item{p.value}{the p-value for the test.}
#' \item{method}{a character string with the value "Diebold-Mariano Test".}
#' \item{data.name}{a character vector giving the names of the two error series.}
#' @author George Athanasopoulos and Kirill Kuroptev
#' @references Diebold, F.X. and Mariano, R.S. (1995) Comparing predictive
#' accuracy. \emph{Journal of Business and Economic Statistics}, \bold{13},
#' 253-263.
#'
#' Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of
#' prediction mean squared errors. \emph{International Journal of forecasting},
#' \bold{13}(2), 281-291.
#' @keywords htest ts
#' @examples
#'
#' # Test on in-sample one-step forecasts
#' f1 <- ets(WWWusage)
#' f2 <- auto.arima(WWWusage)
#' accuracy(f1)
#' accuracy(f2)
#' dm.test(residuals(f1), residuals(f2), h = 1)
#'
#' # Test on out-of-sample one-step forecasts
#' f1 <- ets(WWWusage[1:80])
#' f2 <- auto.arima(WWWusage[1:80])
#' f1.out <- ets(WWWusage[81:100], model = f1)
#' f2.out <- Arima(WWWusage[81:100], model = f2)
#' accuracy(f1.out)
#' accuracy(f2.out)
#' dm.test(residuals(f1.out), residuals(f2.out), h = 1)
#' @export
dm.test <- function(e1, e2, alternative = c("two.sided", "less", "greater"), h = 1,
power = 2, varestimator = c("acf", "bartlett")) {
alternative <- match.arg(alternative)
varestimator <- match.arg(varestimator)
h <- as.integer(h)
if(h < 1L) {
stop("h must be at least 1")
}
if(h > length(e1)) {
stop("h cannot be longer than the number of forecast errors")
}
d <- c(abs(e1))^power - c(abs(e2))^power
d.cov <- acf(d, na.action = na.omit, lag.max = h-1, type = "covariance", plot = FALSE)$acf[, , 1]
n <- length(d)
if (varestimator == "acf" | h == 1L) {
# Original estimator
d.var <- sum(c(d.cov[1], 2 * d.cov[-1])) / n
} else { # varestimator == "bartlett"
# Using Bartlett weights to ensure a positive estimate of long-run-variance
d.var <- sum(c(d.cov[1], 2 * (1 - seq_len(h-1)/h) * d.cov[-1])) / n
}
dv <- d.var
if (dv > 0) {
STATISTIC <- mean(d, na.rm = TRUE) / sqrt(dv)
} else if (h == 1) {
stop("Variance of DM statistic is zero")
} else {
warning("Variance is negative. Try varestimator = bartlett. Proceeding with horizon h=1.")
return(dm.test(e1, e2, alternative, h = 1, power, varestimator))
}
k <- ((n + 1 - 2 * h + (h / n) * (h - 1)) / n) ^ (1 / 2)
STATISTIC <- STATISTIC * k
names(STATISTIC) <- "DM"
if (alternative == "two.sided") {
PVAL <- 2 * pt(-abs(STATISTIC), df = n - 1)
} else if (alternative == "less") {
PVAL <- pt(STATISTIC, df = n - 1)
} else if (alternative == "greater") {
PVAL <- pt(STATISTIC, df = n - 1, lower.tail = FALSE)
}
PARAMETER <- c(h, power)
names(PARAMETER) <- c("Forecast horizon", "Loss function power")
structure(
list(
statistic = STATISTIC, parameter = PARAMETER,
alternative = alternative, varestimator = varestimator, p.value = PVAL, method = "Diebold-Mariano Test",
data.name = c(deparse(substitute(e1)), deparse(substitute(e2)))
),
class = "htest"
)
}
is.htest <- function(x) {
inherits(x, "htest")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.