Nothing
library(testthat)
library(fpROC)
testthat::test_that("pROC metrics, pAUC ratios between model predictions and random", {
test_data <- abs(rnorm(100))
pred_data <- abs(rnorm(100))
result <- fpROC::auc_metrics(test_prediction = test_data,
prediction = pred_data,
compute_full_auc = TRUE)
testthat::expect_match(class(result$summary)[1],"matrix")
testthat::expect_match(class(result$proc_results)[1],"matrix")
})
testthat::test_that("pROC metrics, pAUC ratios between raster model predictions and random", {
test_data <- rnorm(100)
r <- terra::rast(ncol=10, nrow=10)
terra::values(r) <- rnorm(terra::ncell(r))
result <- fpROC::auc_metrics(test_prediction = test_data, prediction = r)
testthat::expect_match(class(result$summary)[1],"matrix")
testthat::expect_match(class(result$proc_results)[1],"matrix")
})
testthat::test_that("Summary of AUC and pAUC results",{
# Basic usage with random data
set.seed(123)
train_pred <- runif(1000) # Training predictions
test_pred <- runif(500) # Test predictions
# Compute only partial AUC metrics (500 iterations)
results <- fpROC::auc_parallel(test_pred, train_pred,
threshold = 5.0,
iterations = 100) # Reduced for example
# Summarize results (assume complete AUC was not computed)
summary <- fpROC::summarize_auc_results(results, has_complete_auc = FALSE)
testthat::expect_match(class(summary)[1],"matrix")
})
testthat::test_that("AUC computation",{
x <- c(0, 0.5, 1, 1.5, 2)
y <- c(0, 0.7, 0.9, 0.95, 1)
auc <- fpROC::trap_roc(x, y) # Returns AUC
testthat::expect_match(class(auc),"numeric")
})
testthat::test_that("No variability in model preds",{
set.seed(123)
train_pred <- runif(100) # Training predictions
test_pred <- train_pred # Test predictions
testthat::expect_error(fpROC::auc_metrics(
threshold = 5.0,
iterations = 100)) # Reduced for example
testthat::expect_error(fpROC::auc_metrics(test_prediction = "1",
prediction = train_pred,
threshold = 5.0,
iterations = 100)) #
testthat::expect_error(fpROC::auc_metrics(test_prediction = 1,
prediction = "1",
threshold = 5.0,
iterations = 100)) #
testthat::expect_warning(fpROC::auc_metrics(test_prediction = 1,
prediction = rep(1,10),
threshold = 5.0,
iterations = 100)) #
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.