Nothing
#' Generates a zero mean vector autoregressive process of a given order.
#'
#' We simulate a vector autoregressive process
#' \deqn{
#' X_t=\sum_{k=1}^p \Psi_k X_{t-k}+\varepsilon_t,\quad 1\leq t\leq n.
#' }
#' The innovation process \eqn{\varepsilon_t} is either multivariate normal or multivariate
#' \eqn{t} with a predefined covariance/scale matrix sigma and zero mean. The noise is generated
#' with the package \code{mvtnorm}. For Gaussian noise we use \code{\link[mvtnorm]{rmvnorm}}. For Student-t noise
#' we use \code{\link[mvtnorm]{rmvt}}. The parameters sigma and df are imported as arguments, otherwise we use default
#' settings. To initialise the process we set
#' \eqn{[X_{1-p},\ldots,X_{0}]=[\varepsilon_{1-p},\ldots,\varepsilon_{0}]}. When \code{burnin} is set
#' equal to \eqn{K} then, n\eqn{+K} observations are generated and the first \eqn{K} will be trashed.
#'
#' @title Simulate a multivariate autoregressive time series
#' @param n number of observations to generate.
#' @param d dimension of the time series.
#' @param Psi array of \eqn{p \geq 1} coefficient matrices. \code{Psi[,,k]} is the \eqn{k}-th coefficient. If no value is set then we generate a vector autoregressive process of order 1. Then, \code{Psi[,,1]} is proportional to \eqn{\exp(-(i+j)\colon 1\leq i, j\leq d)} and such that the spectral radius of \code{Psi[,,1]} is 1/2.
#' @param burnin an integer \eqn{\geq 0}. It specifies a number of initial observations to be trashed to achieve stationarity.
#' @param noise \code{mnormal} for multivariate normal noise or \code{mt} for multivariate student t noise. If not specified \code{mnormal} is chosen.
#' @param sigma covariance or scale matrix of the innovations. By default the identity matrix.
#' @param df degrees of freedom if \code{noise = "mt"}.
#' @importFrom graphics plot title
#' @return A matrix with \code{d} columns and \code{n} rows. Each row corresponds to one time point.
#' @seealso \code{\link{rma}}
#' @keywords simulations
#' @export
rar = function(n, d = 2, Psi = NULL, burnin = 10, noise = c('mnormal', 'mt'), sigma = NULL, df = 4)
{
if (!is.null(Psi))
d = dim(Psi)[1]
if (n < 1)
stop ("n must be a positive integer")
if (d < 1)
stop ("d must be a positive integer")
if (length(noise)>1)
noise = 'mnormal'
if (is.null(sigma))
sigma = diag(d)
if (det(sigma)<0 || !isSymmetric(sigma))
stop("sigma is not a covariance matrix.")
# if no operator then make some default
if (is.null(Psi)){
Psi = exp(-(1:d))%*%t(exp(-(1:d)))
Psi = Psi/norm(Psi,type="F")/2
}
# build coefficients matrix (initially null)
coef = matrix(0,n+burnin,d)
fnoise = function() {
mvtnorm::rmvnorm(n = 1,mean = rep(0,d), sigma = sigma)
}
if (noise == 'mt'){
fnoise = function() {
mvtnorm::rmvt(n = 1, sigma = sigma, df=df)
}
}
D = dim(Psi)[3]
if (is.na(D)){
Psi = array(Psi, c(dim(Psi),1))
D=1
}
coef[1,] = fnoise()
# each next follow Y = Psi(X) + noise
for (i in 2:(n+burnin)){
last = min(D,i-1)
for (j in 1:last){
coef[i,] = coef[i,] + as.matrix(Psi[,,j]) %*% coef[i-j,]
}
coef[i,] = coef[i,] + fnoise()
}
# return the time series
coef[(burnin+1):(burnin+n),]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.