Nothing
plsPI_var = function (data, newdata, order=2, B, alpha, lambda, var_type = "const", level = 80)
{
data = data$y
n = ncol(data)
p = nrow(data)
n2 = length(newdata)
newdata2 = scale(t(data), scale = FALSE)
mdata = apply(data, 1, mean)
mdata1 = mdata[1:n2]
mdata2 = mdata[(n2 + 1):p]
mdata3 = matrix(rep(mdata2, B), length(mdata2), B)
q = matrix(, order, (n - order - 3))
for (k in 1:(n - order - 3)) {
j = (order + 2) + k
load = svd(newdata2[1:j, ])$v[, 1:order]
load2 = svd(newdata2[1:(j + 1), ])$v[, 1:order]
sco2 = newdata2[1:(j + 1), ] %*% load2
sco = newdata2[1:j, ] %*% load
colnames(sco) = c("s1","s2")
var_pred = predict(vars::VAR(sco, p = 1, type = "const"), n.ahead = 1,
ci = level/100)
fore_var = matrix(, order, 1)
for(i in 1:order) {
var_fit_pred = var_pred$fcst[[i]]
fore_var[i, ] = var_fit_pred[, 1]
}
q[, k] = sco2[(j + 1), ] - fore_var
}
oldata = newdata2[1:n, ]
mhandata = apply(data[, 1:n], 1, mean)
mhandata = matrix(rep(mhandata, B), p, B)
load3 = svd(oldata)$v[, 1:order]
load4 = as.matrix(load3)[1:n2, ]
load5 = as.matrix(load3)[(n2 + 1):p, ]
sco3 = oldata %*% load3
colnames(sco3) = c("s1","s2")
var_pred = predict(vars::VAR(sco3, p = 1, type = var_type), n.ahead = 1,
ci = level/100)
fore2_var = matrix(, order, 1)
for (i in 1:order) {
var_fit_pred = var_pred$fcst[[i]]
fore2_var[i, ] = var_fit_pred[, 1]
}
k = matrix(, order, B)
for (i in 1:order) {
k[i, ] = sample(q[i, ], size = B, replace = TRUE)
}
fore2_var = matrix(rep(fore2_var, B), order, B)
bbeta = fore2_var + k
resi = oldata - sco3 %*% t(load3)
k2 = matrix(, (p - n2), B)
for (i in 1:(p - n2)) {
j = n2 + i
k2[i, ] = sample(resi[, j], size = B, replace = TRUE)
}
I = diag(1:order)
betapls = matrix(, order, B)
if (n2 == 1) {
for (i in 1:B) {
betapls[, i] = ginv(t(matrix(load4, nrow = 1)) %*%
matrix(load4, nrow = 1) + lambda * I) %*% (t(matrix(load4,
nrow = 1)) %*% (newdata - mdata1) + lambda *
bbeta[, i])
}
}
if (n2 > 1) {
for (i in 1:B) {
betapls[, i] = ginv(t(load4) %*% load4 + lambda *
I) %*% (t(load4) %*% (newdata - mdata1) + lambda *
bbeta[, i])
}
}
bootsamp = load5 %*% betapls + k2 + mdata3
w1 = w2 = w3 = w4 = matrix(, (p - n2), 1)
for (i in 1:(p - n2)) {
w1[i, ] = quantile(bootsamp[i, ], alpha/2)
}
for (i in 1:(p - n2)) {
w2[i, ] = quantile(bootsamp[i, ], 1 - alpha/2)
}
forecasts = apply(bootsamp, 1, mean)
return(list(forecasts = forecasts, bootsamp = bootsamp, low = w1,
up = w2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.