Nothing
#' @author José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer
makePreds_F <- function(fMs.tp, fMs.pp, sig2, thetas_f, kerType, L, LInvY, detail, nugget){
# create empty prediction list
preds <- list()
# compute and store conditional mean and standard deviation
K.tp <- sig2 * setR(thetas_f, fMs.tp, kerType)
LInvK <- backsolve(L, K.tp, upper.tri = FALSE)
preds$mean <- t(LInvK) %*% LInvY
preds$sd <- sqrt(pmax(sig2 - apply(LInvK, 2, crossprod), 0))
# if user requires details, provide K.tp and K.pp
if (detail == "full") {
preds$K.tp <- K.tp
R <- setR(thetas_f, fMs.pp, kerType)
preds$K.pp <- sig2 * (R + diag(nugget, nrow = nrow(R), ncol = ncol(R)))
}
return(preds)
}
#' @author José Betancourt, François Bachoc, Thierry Klein and Jérémy Rohmer
preMats_F <- function(fMs, sOut, sig2, thetas_f, kerType, nugget){
# precompute L and LInvY matrices
R <- setR(thetas_f, fMs, kerType)
K.tt <- sig2 * (R + diag(nugget, nrow = nrow(R), ncol = ncol(R)))
L <- t(chol(K.tt))
LInvY <- backsolve(L, sOut, upper.tri = FALSE)
return(list(L = L, LInvY = LInvY))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.