Nothing
## ******************************************************************************
## 'New' plot methods. These are simply standard interfaces to the
## existing methods 'plotLOO', 'plotEvol", 'plotX', 'plotPreds' and
## 'plotSim', but the user can access to these by following in a
## standard R route.
##
## ******************************************************************************
## ==============================================================================
## plot generic. Left undocumented by omitting the title
## ==============================================================================
##' @name plot
##' @rdname plot-methods
##' @exportMethod plot
##' @noRd
setGeneric(name = "plot", def = function(x, y, ...) standardGeneric("plot"))
## ==============================================================================
## plot method, class "fgpm"
## ==============================================================================
##' Plot the Leave-One-Out (LOO) calibration.
##'
##' @description This method provides a diagnostic plot for the
##' validation of regression models. It displays a calibration plot
##' based on the leave-one-out predictions of the output at the
##' points used to train the model.
##'
##' @title Plot method for the class \code{"fgpm"}
##'
##' @param x A \code{fgpm} object.
##' @param y Not used.
##' @param ... Graphical parameters. These currently include
##' \itemize{
##' \item\code{xlim}, \code{ylim} to set the limits of the axes.
##' \item\code{pch}, \code{pt.col}, \code{pt.bg}, \code{pt.cex} to set
##' the symbol used for the points and the related properties.
##' \item\code{line} to set the color used for the line.
##' \item\code{xlab}, \code{ylab}, \code{main} to set
##' the labels of the axes and the main title. See
##' \bold{Examples}.
##' }
##' @export
##' @method plot fgpm
##'
##' @examples
##' # generating input and output data for training
##' set.seed(100)
##' n.tr <- 25
##' sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)),
##' x2 = seq(0, 1, length = sqrt(n.tr)))
##' fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10),
##' f2 = matrix(runif(n.tr*22), ncol = 22))
##' sOut <- fgp_BB3(sIn, fIn, n.tr)
##'
##' # building the model
##' m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
##'
##' # plotting the model
##' plot(m1)
##' # change some graphical parameters if wanted
##' plot(m1, line = "SpringGreen3" ,
##' pch = 21, pt.col = "orangered", pt.bg = "gold",
##' main = "LOO cross-validation")
##'
setMethod("plot", "fgpm",
function(x, y = NULL, ...) {
plotLOO.fgpm(model = x, ...)
})
## ==============================================================================
## plot method, class "Xfgpm"
## ==============================================================================
##' @description Plot an object with class \code{"Xfgpm"} representing
##' a collection of functional GP models corresponding to
##' different structural parameters.
##'
##' Two types of graphics can be shown depending on the choice of
##' \code{which}. The choice \code{which = "diag"} is used to display
##' diagnostics of the quality of the optimized model. Two types of
##' diagnostic plots are shown as sub-plots by default, but each can be
##' discarded if wanted. The choice \code{which = "evol"} is used to
##' assess the quality of the fitted \code{fgpm} models on the basis of
##' Leave-One-Out cross-validation.
##'
##' The choice \code{which = "diag"} (default) provides two plots for
##' assessing the quality of the output delivered by the model selection
##' algorithm in the \link[funGp]{fgpm_factory} function. The first
##' one is a calibration plot similar to the one offered for
##' \linkS4class{fgpm} objects by \link[funGp]{plot,fgpm-method}.
##' This plot allows to validate the absolute quality of the selected
##' model. The second one displays the performance statistic of all
##' the models successfully evaluated by the model selection
##' algorithm. This provides a notion of the relative quality of the
##' selected model with respect to the other models that can be made
##' using the same data.
##'
##' The choice \code{which = "evol"} displays the evolution of the
##' quality of the configurations evaluated along the iterations, by
##' the model selection algorithm in the \code{fgpm_factory} function. For
##' each iteration, the performance statistic of all the evaluated
##' models is printed, along with the corresponding median of the
##' group. The plot also includes the global maximum, which
##' corresponds to the best performance statistic obtained up to the
##' current iteration. In this plot, it is typical to have some points
##' falling relatively far from the maximum, even after multiple
##' iterations. This happens mainly because we have multiple
##' categorical features, whose alteration might change the
##' performance statistic in a nonsmooth way. On the other hand, the
##' points that fall below zero usually correspond to models whose
##' hyperparameters were hard to optimize. This occurs sporadically
##' during the log-likelihood optimization for Gaussian processes, due
##' to the non-linearity of the objective function. As long as the
##' maximum keeps improving and the median remains close to it, none
##' of the two aforementioned phenomena is matter for worries. Both
##' of them respond to the mechanism of exploration implemented in the
##' algorithm, which makes it able to progressively move towards
##' better model configurations.
##'
##'
##' @title Plot method for the class \code{"Xfgpm"}
##'
##' @param x The \code{Xfgpm} object to plot.
##'
##' @param y Not used.
##'
##' @param which Character giving the type of plot wanted. Can take the value
##' \code{"diag"} or \code{"evol"}. See \bold{Examples}.
##'
##' @param calib Logical. If \code{TRUE} the calibration plot of the
##' selected model will be included in the display in its
##' "diagnostic" part if \code{which} is set to \code{"diag"}.
##'
##' @param fitp Logical. If \code{TRUE} a scatter plot of the quality
##' of all explored models will be included in the display in its
##' "diagnostic" part if \code{which} is set to \code{"diag"}.
##'
##' @param horiz Logical. Used only when \code{which} is \code{"diag"}
##' and when both \code{calib} and \code{fitp} are \code{TRUE}. If
##' \code{horiz} is \code{TRUE} the two subplots are displayed
##' horizontally (on a same row) rather than vertically which is
##' the default.
##'
##' @param ... Other graphical parameters such as \code{main} of
##' \code{xlab}. When \code{which} is \code{"diag"} and both
##' \code{calib} and \code{fitp} are \code{TRUE}, the graphical parameters
##' should be enclosed into a list and passed with the formal name
##' \code{calib.gpars} or \code{fitp.gpars}.
##'
##'
##'
##' @export
##' @method plot Xfgpm
##'
##' @seealso \strong{*} \link[funGp]{fgpm_factory} for structural
##' optimization of funGp models.
##'
##' @examples
##' # generating input and output data
##' set.seed(100)
##' n.tr <- 2^5
##' x1 <- x2 <- x3 <- x4 <- x5 <- seq(0, 1, length = n.tr^(1/5))
##' sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
##' fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
##' f2 = matrix(runif(n.tr * 22), ncol = 22))
##' sOut <- fgp_BB7(sIn, fIn, n.tr)
##' \dontrun{
##' # optimizing the model structure with 'fgpm_factory' (~10 seconds)
##' xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut)
##' # assessing the quality of the model - absolute and w.r.t. the other
##' # explored models
##' plot(xm, which = "evol")
##' # diagnostics (two subplots)
##' plot(xm, which = "diag")
##' plot(xm, which = "diag", horiz = TRUE)
##' # diagnostics (one plot)
##' plot(xm, which = "diag", fitp = FALSE)
##' plot(xm, which = "diag", calib = FALSE)
##' # customizing some graphical parameters
##' plot(xm, calib.gpars = list(xlim = c(800,1000), ylim = c(600,1200)),
##' fitp.gpars = list(main = "Relative quality", legends = FALSE))
##'
##' }
setMethod("plot", "Xfgpm",
function(x, y = NULL, which = c("diag", "evol"),
calib = TRUE, fitp = TRUE, horiz = FALSE, ...) {
which <- match.arg(which)
if (which == "evol") {
if (!missing(calib) || ! missing(fitp)) {
warning("the formal arguments 'calib' and 'fitp' are ",
"used only when 'which' is \"diag\"")
}
plotEvol.Xfgpm(x.model = x, ...)
} else if (which == "diag") {
plotX.Xfgpm(x.model = x, calib = calib, fitp = fitp,
horiz = horiz, ...)
}
})
## ==============================================================================
## plot method, S3 class "predict.fgpm"
## ==============================================================================
##' @title Plot method for the predictions of a \code{fgpm} model
##'
##' @description This method displays the predicted output values
##' delivered by a funGp Gaussian process model.
##'
##' @param x An object with S3 class \code{"predict.fgpm"}. This is a
##' list containing the predictions and confidence bands as
##' created by \link[funGp]{predict,fgpm-method} for the S3 class
##' \code{"fgpm"}.
##'
##' @param y An optional vector (or 1-column matrix) containing
##' the true values of the scalar output at the prediction
##' points. If provided, the method will display two figures: (i) a
##' calibration plot with true vs predicted output values, and (ii)
##' a plot including the true and predicted output along with the
##' confidence bands, sorted according to the increasing order of
##' the true output. If not provided, only the second plot will be
##' made, and the predictions will be arranged according to the
##' increasing order of the predicted output.
##'
##' @param sOut.pr Alias of \code{y}, used for compatibility reasons.
##'
##' @param calib An optional boolean indicating if the calibration
##' plot should be displayed. Ignored if \code{sOut.pr} is not
##' provided. Default is \code{TRUE}.
##'
##' @param sortp An optional boolean indicating if the plot of sorted
##' output should be displayed. Default is TRUE.
##'
##' @param ... Additional arguments affecting the display. Since this
##' method allows to generate two plots from a single function
##' call, the extra arguments for each plot should be included in a
##' list. For the calibration plot, the list should be called
##' \emph{calib.gpars}. For the plot of the output in increasing
##' order, the list should be called \emph{sortp.gpars}. The
##' following typical graphics parameters are valid entries of both
##' lists: \emph{xlim}, \emph{ylim}, \emph{xlab}, \emph{ylab},
##' \emph{main}. The boolean argument \emph{legends} can also be
##' included in any of the two lists in order to control the
##' display of legends in the corresponding plot.
##'
##' @export
##' @method plot predict.fgpm
##'
##'
##' @author José Betancourt, François Bachoc and Thierry Klein
##'
##' @seealso \strong{*} \link[funGp]{fgpm} for the construction of funGp models;
##' @seealso \strong{*} \link[funGp]{plot,fgpm-method} for model diagnostic plots;
##' @seealso \strong{*} \link[funGp]{simulate,fgpm-method} for simulations based on a funGp model;
##' @seealso \strong{*} \link[funGp]{plot.simulate.fgpm} for simulation plots.
##'
##' @examples
##' # plotting predictions without the true output values_______________________
##' # building the model
##' set.seed(100)
##' n.tr <- 25
##' sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
##' x2 = seq(0, 1, length = sqrt(n.tr)))
##' fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
##' f2 = matrix(runif(n.tr * 22), ncol = 22))
##' sOut <- fgp_BB3(sIn, fIn, n.tr)
##' m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
##'
##' # making predictions
##' n.pr <- 100
##' sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),
##' x2 = seq(0,1,length = sqrt(n.pr))))
##' fIn.pr <- list(f1 = matrix(runif(n.pr * 10), ncol = 10),
##' f2 = matrix(runif(n.pr * 22), ncol = 22))
##' m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)
##'
##' # plotting predictions
##' plot(m1.preds)
##'
##' # plotting predictions and true output values_______________________________
##' # building the model
##' set.seed(100)
##' n.tr <- 25
##' sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
##' x2 = seq(0, 1, length = sqrt(n.tr)))
##' fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
##' f2 = matrix(runif(n.tr * 22), ncol = 22))
##' sOut <- fgp_BB3(sIn, fIn, n.tr)
##' m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
##'
##' # making predictions
##' n.pr <- 100
##' sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)),
##' x2 = seq(0,1,length = sqrt(n.pr))))
##' fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10),
##' f2 = matrix(runif(n.pr*22), ncol = 22))
##' m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)
##'
##' # generating output data for validation
##' sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)
##'
##' # plotting predictions. Note that the 2-nd argument is the output, 'y'
##' plot(m1.preds, sOut.pr)
##'
##' # only calibration plot
##' plot(m1.preds, sOut.pr = sOut.pr, sortp = FALSE)
##'
##' # only sorted output plot
##' plot(m1.preds, sOut.pr = sOut.pr, calib = FALSE)
##'
plot.predict.fgpm <- function(x, y = NULL, sOut.pr = NULL,
calib = TRUE, sortp = TRUE, ...) {
if (!is.null(y)) {
if (!is.null(sOut.pr)) {
warning("both 'y' and 'sOut.pr' are given. Only 'y' ",
"will be used")
}
sOut.pr <- y
}
plotPreds.fgpm(preds = x, sOut.pr = sOut.pr, calib = calib,
sortp = sortp, ...)
}
# ==============================================================================
## plot method, S3 class "simulate.fgpm"
## ==============================================================================
##' @title Plot method for the simulations of a \code{fgpm} model
##'
##' @description This method displays the simulated output values
##' delivered by a funGp Gaussian process model.
##'
##' @param x An object with S3 class \code{simulate.fgpm} as created
##' by \link[funGp]{simulate,fgpm-method}.
##'
##' @param y Not used.
##'
##' @param detail An optional character string specifying the data
##' elements that should be included in the plot, to be chosen
##' between \code{"light"} and \code{"full"}. A \emph{light} plot
##' will include only the simulated values, while a
##' \emph{full} plot will also include the predicted mean and
##' confidence bands at the simulation points. This argument will
##' only be used if full simulations (including the mean and
##' confidence bands) are provided, otherwise it will be
##' ignored. See \link[funGp]{simulate,fgpm-method} for more details on the
##' generation of light and full simulations.
##'
##' @param ... Additional arguments affecting the display. The
##' following typical graphics parameters are valid entries:
##' \emph{xlim}, \emph{ylim}, \emph{xlab}, \emph{ylab},
##' \emph{main}. The boolean argument \emph{legends} can also be
##' included in any of the two lists in order to control the
##' display of legends in the corresponding plot.
##'
##'
##' @author José Betancourt, François Bachoc and Thierry Klein
##'
##' @export
##' @method plot simulate.fgpm
##'
##' @seealso \strong{*} \link[funGp]{fgpm} for the construction of funGp models;
##' @seealso \strong{*} \link[funGp]{plot,fgpm-method} for model diagnostic plots;
##' @seealso \strong{*} \link[funGp]{predict,fgpm-method} for predictions based on a funGp model;
##' @seealso \strong{*} \link[funGp]{plot.predict.fgpm} for prediction plots.
##'
##' @examples
##' # plotting light simulations________________________________________________
##' # building the model
##' set.seed(100)
##' n.tr <- 25
##' sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
##' x2 = seq(0, 1, length = sqrt(n.tr)))
##' fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
##' f2 = matrix(runif(n.tr * 22), ncol = 22))
##' sOut <- fgp_BB3(sIn, fIn, n.tr)
##' m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
##'
##' # making light simulations
##' n.sm <- 100
##' sIn.sm <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)),
##' x2 = seq(0, 1, length = sqrt(n.sm))))
##' fIn.sm <- list(f1 = matrix(runif(n.sm * 10), ncol = 10),
##' f2 = matrix(runif(n.sm * 22), ncol = 22))
##' simsl <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)
##'
##' # plotting light simulations
##' plot(simsl)
##'
##'
##' # plotting full simulations_________________________________________________
##' # building the model
##' set.seed(100)
##' n.tr <- 25
##' sIn <- expand.grid(x1 = seq(0, 1, length = sqrt(n.tr)),
##' x2 = seq(0, 1, length = sqrt(n.tr)))
##' fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
##' f2 = matrix(runif(n.tr * 22), ncol = 22))
##' sOut <- fgp_BB3(sIn, fIn, n.tr)
##' m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
##'
##' # making full simulations
##' n.sm <- 100
##' sIn.sm <- as.matrix(expand.grid(x1 = seq(0, 1, length = sqrt(n.sm)),
##' x2 = seq(0, 1 ,length = sqrt(n.sm))))
##' fIn.sm <- list(f1 = matrix(runif(n.sm * 10), ncol = 10),
##' f2 = matrix(runif(n.sm * 22), ncol = 22))
##' simsf <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm,
##' detail = "full")
##'
##' # plotting full simulations in "full" mode
##' plot(simsf)
##'
##' # plotting full simulations in "light" mode
##' plot(simsf, detail = "light")
##'
plot.simulate.fgpm <- function(x, y = NULL, detail = NA, ...) {
if (is.na(detail)) {
if (is.list(x)) detail <- "full"
else detail <- "light"
} else {
detVal <- c("light", "full")
if (is.na(i <- pmatch(detail, detVal))) {
stop("invalid value for 'detail'")
} else detail <- detVal[i]
if ((detail == "full") && !is.list(x)) {
warning("the value \"full\" for 'detail' can only ",
"be used when `x` is a list")
detail <- "light"
}
}
plotSims.fgpm(sims = x, detail = detail, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.