stat_cff: Cuevas-Febrero-Fraiman statistic

View source: R/statistics.R

stat_cffR Documentation

Cuevas-Febrero-Fraiman statistic

Description

The Cuevas-Febrero-Fraiman statistics defined in Cuevas et al (2004) (and noted CFF in Smida et al 2022) is computed to compare two sets of functional trajectories.

Usage

stat_cff(MatX, MatY)

Arguments

MatX

numeric matrix of dimension ⁠n_point x n⁠ containing n trajectories (in columns) of size n_point (in rows).

MatY

numeric matrix of dimension ⁠n_point x m⁠ containing m trajectories (in columns) of size n_point (in rows).

Value

numeric value corresponding to the WMW statistic value

Author(s)

Zaineb Smida, Ghislain DURIF, Lionel Cucala

References

Cuevas, A, Febrero, M, and Fraiman, R (2004) An anova test for functional data. Computational Statistics & Data Analysis, 47(1): 111–122. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.csda.2003.10.021")}

Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10485252.2022.2064997")}, hal-03658578

See Also

comp_stat(), permut_pval()

Examples

simu_data <- simul_data(
    n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10, 
    delta_shape = "constant", distrib = "normal"
)

MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2

stat_cff(MatX, MatY)

funStatTest documentation built on May 29, 2024, 10:26 a.m.