stat_hkr | R Documentation |
The Horváth-Kokoszka-Reeder statistics defined in Chakraborty & Chaudhuri (2015) (and noted HKR1 and HKR2 in Smida et al 2022) are computed to compare two sets of functional trajectories.
stat_hkr(MatX, MatY)
MatX |
numeric matrix of dimension |
MatY |
numeric matrix of dimension |
A list with the following elements
T1
: numeric value corresponding to the HKR1 statistic value
T2
: numeric value corresponding to the HKR2 statistic value
eigenval
: numeric vector of eigen values from the empirical
pooled covariance matrix of MatX
and MatY
(see Smida et al, 2022, for
more details)
Zaineb Smida, Ghislain DURIF, Lionel Cucala
Horváth, L., Kokoszka, P., & Reeder, R. (2013). Estimation of the mean of functional time series and a two-sample problem. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 75(1), 103–122. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1467-9868.2012.01032.x")}
Zaineb Smida, Lionel Cucala, Ali Gannoun & Ghislain Durif (2022) A median test for functional data, Journal of Nonparametric Statistics, 34:2, 520-553, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10485252.2022.2064997")}, hal-03658578
comp_stat()
, permut_pval()
simu_data <- simul_data(
n_point = 100, n_obs1 = 50, n_obs2 = 75, c_val = 10,
delta_shape = "constant", distrib = "normal"
)
MatX <- simu_data$mat_sample1
MatY <- simu_data$mat_sample2
stat_hkr(MatX, MatY)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.