R/estPI.R

Defines functions estPI

Documented in estPI

# Version: 28-06-2013, DF

# Changes:
# 28-06-2013: Added comments and changes the layout, DF

# This function calculates the different probabilistic indices for P_t , P_tt' and P_tt't''
# It supports (under Linux) parallel computing and offers several different algorithms to
# calculate the probability estimators, which should in general provide the same results, but
# have of course different calculation times. Different algorithms are mainly here to validate
# the different approaches as well as compare different implementation with respect to calculation
# time.

  estPI <- function(X,g,type="pair",goi=NULL,mc=1,order=TRUE,alg="Cnaive"){
  
  # Input checks
    type <- match.arg(type,c("single","pair","triple"))
    alg <- match.arg(alg,c("Cnaive","Csubmat","Rsubmat","Rnaive","Rgrid"))
    g <- relabelGroups(g)

  # Define the output object
    result <- list()

  # Get flags, if the input X will be analyzed as vector or matrix (matrix input can be handled parallel)
    dimX <- dim(X)
    XisVector <- is.null(dimX)
    if(is.null(goi)) goi <- g
    goi <- unique(goi)
    Ngoi <- length(goi)

  # First remove those entries, which are not requested via goi:
    pickThose <- is.element(g,goi)
    ifelse(XisVector , X <- X[pickThose] , X <- X[pickThose,])
    g <- g[pickThose]

  # Input check for amount of cores
    if(mc>detectCores())
    {
      mc <- detectCores()
      warning(paste("You do not have so many cores on this machine! I automatically reduced it to your machines maximum number:",mc,"\n"))
    }
    mc <- min(dimX[2],mc)

  # Check first, how many probabilistic indices are requested (depending on input type, goi and order)
    NlistItems <- c()
    if(type=="single")
    {
      # In case of P_t possibe PE are for each single group
      NlistItems <- Ngoi
      comb <- goi
    } else if (type=="pair"){
      NlistItems <- getNListItems(Ngoi,"pair",order)
      comb <- getComb(goi,type="pairs",order)
    } else if (type=="triple"){
      NlistItems <- getNListItems(Ngoi,"triple",order)
      comb <- getComb(goi,type="triple",order)
    }

  # Loops for parallel calcuations in the 3 cases (only available when X is a matrix):
  # Remember, those functions are ONLY to apply within the following FOR-loops and hence
  # they contain variables, which are only visible within this environment!!!
    inner1 <- function(i,X,g,t,goi,alg){
      PE1(X[,i],g,t,goi,alg) 
    }
    inner2 <- function(i,X,g,comb,alg){
      PE2(X[,i],g,comb,alg) 
    }
    inner3 <- function(i,X,g,comb,alg){
      PE3(X[,i],g,comb,alg) 
    }

  # Now go through all the possible options for the PI
    for(oRun in 1:NlistItems)
    {  
	if(XisVector)
	{
	  # Calculate here, if just one variable is given
	  if(type=="single")
	  {
	    result[[oRun]] <- PE1(X,g,goi[oRun],goi,alg) 
	    names(result)[oRun] <- paste("P(",goi[oRun],")",sep="")

	  } else if(type=="pair")
	    {
	    result[[oRun]] <- PE2(X,g,comb[oRun,],alg)
	    names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")

	  } else if(type=="triple")
	    {
	    result[[oRun]] <- PE3(X,g,comb[oRun,],alg)
	    names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
	  }
      
	} else {
	  # Calculate PE, if more than one variable is given
	  if(type=="single")
	  {
	    result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner1,X,g,goi[oRun],goi,alg,mc.cores=mc))
	    names(result)[oRun] <- paste("P(",goi[oRun],")",sep="")

	  } else if(type=="pair"){
	    result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner2,X,g,comb[oRun,],alg,mc.cores=mc))
	    names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")

	  } else if(type=="triple"){
	    result[[oRun]] <- unlist(mclapply(c(1:dimX[2]),inner3,X,g,comb[oRun,],alg,mc.cores=mc))
	    names(result)[oRun] <- paste("P(",paste(comb[oRun,],collapse="<"),")",sep="")
	  }
	}
    }

  # Rearrange the output, depending on Vector/Matrix input
    if(XisVector)
    {
      result <- unlist(result) 
    } else {
      temp <- matrix(NA,nrow=NlistItems,ncol=dimX[2])
      for(i in 1:NlistItems)
      {
	temp[i,] <- result[[i]]
      }
      rownames(temp) <- names(result)
      colnames(temp) <- colnames(X)
      result <- temp
    }

    res <- list(probs=result,type=type,goi=goi,order=order,obs=X,g=g,alg=alg)

    class(res) <- "estPI"
    return(res)
  } # End of function: estPI

Try the gMWT package in your browser

Any scripts or data that you put into this service are public.

gMWT documentation built on March 26, 2020, 5:49 p.m.