Nothing
# DOUBLE POISSON DISTRIBUTION / MEAN PARAMETRIZATION
# Parameters Function ----------------------------------------------------------
distr_dpois_mean_parameters <- function(n) {
group_of_par_names <- c("mean", "dispersion")
par_names <- c("mean", "dispersion")
par_support <- c("positive", "positive")
res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
return(res_parameters)
}
# ------------------------------------------------------------------------------
# Density Function -------------------------------------------------------------
distr_dpois_mean_density <- function(y, f) {
res_loglik <- distr_dpois_mean_loglik(y = y, f = f)
res_density <- exp(res_loglik)
return(res_density)
}
# ------------------------------------------------------------------------------
# Log-Likelihood Function ------------------------------------------------------
distr_dpois_mean_loglik <- function(y, f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
c <- 1 + (1 - s) / (12 * s * m) * (1 + 1 / (s * m))
res_loglik <- log(s) / 2 - s * m - log(c)
res_loglik[y > 0] <- res_loglik[y > 0] - y + s * y + y * log(y) - lfactorial(y) + y * s * log(m / y)
return(res_loglik)
}
# ------------------------------------------------------------------------------
# Mean Function ----------------------------------------------------------------
distr_dpois_mean_mean <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_mean <- m
return(res_mean)
}
# ------------------------------------------------------------------------------
# Variance Function ------------------------------------------------------------
distr_dpois_mean_var <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_var <- m / s
res_var <- array(res_var, dim = c(t, 1, 1))
return(res_var)
}
# ------------------------------------------------------------------------------
# Score Function ---------------------------------------------------------------
distr_dpois_mean_score <- function(y, f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_score <- matrix(0, nrow = t, ncol = 2L)
res_score[, 1] <- s / m * (y - m)
res_score[, 2] <- 1 / (2 * s) - m
res_score[y > 0, 2] <- res_score[y > 0, 2] + y * (1 + log(m) - log(y))
return(res_score)
}
# ------------------------------------------------------------------------------
# Fisher Information Function --------------------------------------------------
distr_dpois_mean_fisher <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_fisher <- array(0, dim = c(t, 2L, 2L))
res_fisher[, 1, 1] <- s / m
res_fisher[, 2, 2] <- 1 / (2 * s^2)
return(res_fisher)
}
# ------------------------------------------------------------------------------
# Random Generation Function ---------------------------------------------------
distr_dpois_mean_random <- function(t, f) {
m <- f[1]
s <- f[2]
c <- 1 + (1 - s) / (12 * s * m) * (1 + 1 / (s * m))
y <- 0:max(1000, 10 * m, 100 * sqrt(m / s))
l <- log(s) / 2 - s * m - log(c) - y + s * y
l[-1] <- l[-1] + y[-1] * log(y[-1]) - lfactorial(y[-1]) + y[-1] * s * log(m / y[-1])
p <- exp(l)
res_random <- sample(y, size = t, replace = TRUE, prob = p)
res_random <- matrix(res_random, nrow = t, ncol = 1L)
return(res_random)
}
# ------------------------------------------------------------------------------
# Starting Estimates Function --------------------------------------------------
distr_dpois_mean_start <- function(y) {
y_mean <- mean(y, na.rm = TRUE)
y_var <- stats::var(y, na.rm = TRUE)
m <- max(y_mean, 1e-6)
s <- max(y_mean / y_var, 1e-6)
res_start <- c(m, s)
return(res_start)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.