Nothing
# EXPONENTIAL DISTRIBUTION / SCALE PARAMETRIZATION
# Parameters Function ----------------------------------------------------------
distr_exp_scale_parameters <- function(n) {
group_of_par_names <- c("scale")
par_names <- c("scale")
par_support <- c("positive")
res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
return(res_parameters)
}
# ------------------------------------------------------------------------------
# Density Function -------------------------------------------------------------
distr_exp_scale_density <- function(y, f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_density <- be_silent(stats::dexp(y, rate = 1 / s))
return(res_density)
}
# ------------------------------------------------------------------------------
# Log-Likelihood Function ------------------------------------------------------
distr_exp_scale_loglik <- function(y, f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_loglik <- be_silent(stats::dexp(y, rate = 1 / s, log = TRUE))
return(res_loglik)
}
# ------------------------------------------------------------------------------
# Mean Function ----------------------------------------------------------------
distr_exp_scale_mean <- function(f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_mean <- s
return(res_mean)
}
# ------------------------------------------------------------------------------
# Variance Function ------------------------------------------------------------
distr_exp_scale_var <- function(f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_var <- s^2
res_var <- array(res_var, dim = c(t, 1, 1))
return(res_var)
}
# ------------------------------------------------------------------------------
# Score Function ---------------------------------------------------------------
distr_exp_scale_score <- function(y, f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_score <- matrix(0, nrow = t, ncol = 1L)
res_score[, 1] <- (y - s) / s^2
return(res_score)
}
# ------------------------------------------------------------------------------
# Fisher Information Function --------------------------------------------------
distr_exp_scale_fisher <- function(f) {
t <- nrow(f)
s <- f[, 1, drop = FALSE]
res_fisher <- array(0, dim = c(t, 1L, 1L))
res_fisher[, 1, 1] <- 1 / s^2
return(res_fisher)
}
# ------------------------------------------------------------------------------
# Random Generation Function ---------------------------------------------------
distr_exp_scale_random <- function(t, f) {
s <- f[1]
res_random <- be_silent(stats::rexp(t, rate = 1 / s))
res_random <- matrix(res_random, nrow = t, ncol = 1L)
return(res_random)
}
# ------------------------------------------------------------------------------
# Starting Estimates Function --------------------------------------------------
distr_exp_scale_start <- function(y) {
y_mean <- mean(y, na.rm = TRUE)
s <- max(y_mean, 1e-6)
res_start <- s
return(res_start)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.