Nothing
test_that("rpoly works ok", {
## z-1
expect_equal(rpoly(real = 1), c(-1,1))
## roots 1, i, -i; p3(z) = (z-1)(z-i)(z+i)
p3 <- rpoly(c(1, 1i))
p3
## using polar for the complex roots (i = e^(i pi/2))
p3a <- rpoly(1, pi/2, real = 1)
expect_equal(p3a, c(-1, 1, -1, 1))
## mathematically, p3a is the same as p3
## but the numerical calculation here gives a slight discrepancy
## p3a == p3 # [1] TRUE FALSE FALSE TRUE
## p3a - p3 # [1] 0.000000e+00 2.220446e-16 -2.220446e-16 0.000000e+00
## Note: expect_equal ignores this small difference
## using argpi = TRUE is somewhat more precise:
## p3b <- rpoly(1, 1/2, real = 1, argpi = TRUE)
## p3b
## expect_equal(p3b, c(-1, 1, -1, 1))
## p3b == p3 # [1] TRUE TRUE TRUE TRUE
## p3b - p3 # [1] 0 0 0 0
## ## indeed, in this case the results for p3b and p3 are identical:
## identical(p3b, p3) # TRUE
## two ways to expand (z - 2*exp(i*pi/4))(z - 2*exp(-i*pi/4))
rpoly(2, pi/4)
rpoly(2, 1/4, argpi = TRUE)
## set the constant term to 1; can be used, say, for AR models
rpoly(2, pi/4, monic = FALSE)
rpoly(2, 1/4, argpi = TRUE, monic = FALSE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.