Nothing
## ----global options, include = FALSE------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
knitr::opts_knit$set(root.dir = tempdir())
## ----setup--------------------------------------------------------------------
library(gcplyr)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
# This code was previously explained
# Here we're re-running it so it's available for us to work with
example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,
id_cols = "Time")
ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy)
ex_dat_mrg$Well <-
factor(ex_dat_mrg$Well,
levels = paste(rep(LETTERS[1:8], each = 12), 1:12, sep = ""))
#Convert time to hours
ex_dat_mrg$Time <- ex_dat_mrg$Time/3600
## -----------------------------------------------------------------------------
ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage),
deriv = calc_deriv(x = Time, y = Measurements))
## -----------------------------------------------------------------------------
sample_wells <- c("A1", "F1", "F10", "E11")
# Now let's plot the derivative
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = deriv)) +
geom_line() +
facet_wrap(~Well, scales = "free")
## ----include = FALSE----------------------------------------------------------
# For computational speed, let's just keep the wells we'll be focusing on
# (this is hidden from readers bc from this point on we never print out
# the df anyway so there's no difference in the output by filtering here)
ex_dat_mrg <- dplyr::filter(ex_dat_mrg, Well %in% sample_wells)
## -----------------------------------------------------------------------------
ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage),
deriv_percap = calc_deriv(x = Time, y = Measurements,
percapita = TRUE, blank = 0))
# Now let's plot the per-capita derivative
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = deriv_percap)) +
geom_line() +
facet_wrap(~Well, scales = "free")
## -----------------------------------------------------------------------------
ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage),
deriv_percap5 = calc_deriv(x = Time, y = Measurements,
percapita = TRUE, blank = 0,
window_width_n = 5, trans_y = "log"))
# Now let's plot the derivative
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = deriv_percap5)) +
geom_line() +
facet_wrap(~Well, scales = "free")
## -----------------------------------------------------------------------------
ex_dat_mrg <- mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage),
deriv_percap5 = calc_deriv(x = Time, y = Measurements,
percapita = TRUE, blank = 0,
window_width_n = 5, trans_y = "log"),
doub_time = doubling_time(y = deriv_percap5))
head(ex_dat_mrg)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.