Nothing
## ----global options, include = FALSE------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
knitr::opts_knit$set(root.dir = tempdir())
## ----setup--------------------------------------------------------------------
library(gcplyr)
library(dplyr)
library(ggplot2)
## -----------------------------------------------------------------------------
# This code was previously explained
# Here we're re-running it so it's available for us to work with
example_tidydata <- trans_wide_to_tidy(example_widedata_noiseless,
id_cols = "Time")
ex_dat_mrg <- merge_dfs(example_tidydata, example_design_tidy)
ex_dat_mrg$Well <-
factor(ex_dat_mrg$Well,
levels = paste(rep(LETTERS[1:8], each = 12), 1:12, sep = ""))
ex_dat_mrg$Time <- ex_dat_mrg$Time/3600 #Convert time to hours
ex_dat_mrg <-
mutate(group_by(ex_dat_mrg, Well, Bacteria_strain, Phage),
deriv = calc_deriv(x = Time, y = Measurements),
deriv_percap5 = calc_deriv(x = Time, y = Measurements,
percapita = TRUE, blank = 0,
window_width_n = 5, trans_y = "log"),
doub_time = doubling_time(y = deriv_percap5))
sample_wells <- c("A1", "F1", "F10", "E11")
# Drop unneeded columns (optional, but makes things cleaner)
ex_dat_mrg <- dplyr::select(ex_dat_mrg,
Time, Well, Measurements, Bacteria_strain, Phage,
deriv, deriv_percap5)
## ----include = FALSE----------------------------------------------------------
# Here we're only keeping the wells that at one point or another in
# this vignette we visualize. This cuts down on vignette build time
# with no visual indication of the change
ex_dat_mrg <- dplyr::filter(ex_dat_mrg, Well %in% c("A1", "A7", "B4", "B10",
"B5", "B11", "F1", "E11",
"F10", "A4", "E2", "H8"))
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
lag_time = lag_time(y = Measurements, x = Time,
deriv = deriv_percap5, blank = 0),
max_percap = max_gc(deriv_percap5),
max_percap_time = Time[which_max_gc(deriv_percap5)],
max_percap_dens = Measurements[which_max_gc(deriv_percap5)],
min_dens = min_gc(Measurements))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = log(Measurements))) +
geom_point() +
facet_wrap(~Well) +
geom_abline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
color = "red",
aes(slope = max_percap,
intercept = log(max_percap_dens) - max_percap*max_percap_time)) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = lag_time), lty = 2) +
geom_hline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(yintercept = log(min_dens)))
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
min_dens = first_minima(Measurements, return = "y"),
lag_time = lag_time(y = Measurements, x = Time,
deriv = deriv_percap5, blank = 0,
y0 = min_dens),
max_percap = max_gc(deriv_percap5),
max_percap_time = Time[which_max_gc(deriv_percap5)],
max_percap_dens = Measurements[which_max_gc(deriv_percap5)])
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = log(Measurements))) +
geom_point() +
facet_wrap(~Well) +
geom_abline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
color = "red",
aes(slope = max_percap,
intercept = log(max_percap_dens) - max_percap*max_percap_time)) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = lag_time), lty = 2) +
geom_hline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(yintercept = log(min_dens)))
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
max_percap = max_gc(deriv_percap5, na.rm = TRUE),
max_percap_time = extr_val(Time, which_max_gc(deriv_percap5)),
doub_time = doubling_time(y = max_percap))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = deriv_percap5)) +
geom_line() +
facet_wrap(~Well) +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(x = max_percap_time, y = max_percap),
size = 2, color = "red") +
coord_cartesian(ylim = c(-1, NA))
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
max_dens = max_gc(Measurements, na.rm = TRUE),
max_time = extr_val(Time, which_max_gc(Measurements)))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(x = max_time, y = max_dens),
size = 2, color = "red")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
auc = auc(x = Time, y = Measurements))
head(ex_dat_mrg_sum)
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
min_dens = min_gc(Measurements, na.rm = TRUE),
min_time = extr_val(Time, which_min_gc(Measurements)))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(x = min_time, y = min_dens),
size = 2, color = "red")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
min_dens = first_minima(y = Measurements, x = Time, return = "y"),
min_time = first_minima(y = Measurements, x = Time, return = "x"))
head(ex_dat_mrg_sum)
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
above_01 = first_above(y = Measurements, x = Time,
threshold = 0.1, return = "x"))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = above_01), lty = 2, color = "red")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
percap_above_1 = first_above(y = deriv_percap5, x = Time,
threshold = 1, return = "x"))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = deriv_percap5)) +
geom_line() +
facet_wrap(~Well) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = percap_above_1), lty = 2, color = "red") +
coord_cartesian(ylim = c(-1, NA))
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
mid_point = first_above(y = Measurements, x = Time, return = "x",
threshold = max_gc(Measurements)/2),
infl_point = extr_val(Time, which_max_gc(deriv)))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = mid_point), lty = 2, color = "red") +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(xintercept = infl_point), lty = 2, color = "blue")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
centr_x = centroid_x(x = Time, y = Measurements),
centr_y = centroid_y(x = Time, y = Measurements))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(x = centr_x, y = centr_y))
## -----------------------------------------------------------------------------
nophage_wells <- c("A1", "A4", "E2", "F1")
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% nophage_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well, scales = "free")
## -----------------------------------------------------------------------------
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% nophage_wells),
aes(x = Time, y = deriv)) +
geom_line() +
facet_wrap(~Well, scales = "free")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
diauxie_time = find_local_extrema(x = Time, y = deriv, return = "x",
return_maxima = FALSE, return_minima = TRUE,
window_width_n = 39)[2],
diauxie_idx = find_local_extrema(x = Time, y = deriv, return = "index",
return_maxima = FALSE, return_minima = TRUE,
window_width_n = 39)[2],
diauxie_dens = extr_val(Measurements, diauxie_idx))
head(ex_dat_mrg_sum)
# Plot data with a point at the moment of diauxic shift
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% nophage_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well, scales = "free") +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% nophage_wells),
aes(x = diauxie_time, y = diauxie_dens),
size = 2, color = "red")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(
group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
diauxie_time =
find_local_extrema(x = Time, y = deriv, return = "x",
return_maxima = FALSE, return_minima = TRUE,
window_width_n = 39)[2],
diauxie_percap = max_gc(deriv_percap5[Time >= diauxie_time]),
diauxie_percap_time =
extr_val(Time[Time >= diauxie_time],
which_max_gc(deriv_percap5[Time >= diauxie_time]))
)
head(ex_dat_mrg_sum)
# Plot data with a point at the moment of peak diauxic growth rate
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% nophage_wells),
aes(x = Time, y = deriv_percap5)) +
geom_line() +
facet_wrap(~Well, scales = "free") +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% nophage_wells),
aes(x = diauxie_percap_time, y = diauxie_percap),
size = 2, color = "red")
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
first_maxima_x = first_maxima(x = Time, y = Measurements,
return = "x"),
first_maxima_y = first_maxima(x = Time, y = Measurements,
return = "y"))
head(ex_dat_mrg_sum)
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% sample_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_point(data = dplyr::filter(ex_dat_mrg_sum, Well %in% sample_wells),
aes(x = first_maxima_x, y = first_maxima_y),
color = "red", size = 1.5)
## -----------------------------------------------------------------------------
ex_dat_mrg_sum <-
summarize(
group_by(ex_dat_mrg, Bacteria_strain, Phage, Well),
extin_time = first_below(x = Time, y = Measurements, threshold = 0.15,
return = "x", return_endpoints = FALSE))
head(ex_dat_mrg_sum)
phage_wells <- c("A7", "B10", "F10", "H8")
ggplot(data = dplyr::filter(ex_dat_mrg, Well %in% phage_wells),
aes(x = Time, y = Measurements)) +
geom_line() +
facet_wrap(~Well) +
geom_vline(data = dplyr::filter(ex_dat_mrg_sum, Well %in% phage_wells),
aes(xintercept = extin_time), lty = 2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.