Nothing
#' @title Generate text from text and image with Gemini
#' @description Generate text from text and image with Gemini
#' @param image The image to generate text
#' @param prompt The prompt to generate text, Default is "Explain this image"
#' @param model The model to use. Options are "2.0-flash", "2.0-flash-lite", "2.5-pro-exp-03-25". Default is '2.0-flash'
#' see https://ai.google.dev/gemini-api/docs/models/gemini
#' @param temperature The temperature to use. Default is 1 value should be between 0 and 2
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param maxOutputTokens The maximum number of tokens to generate.
#' Default is 8192 and 100 tokens correspond to roughly 60-80 words.
#' @param topK The top-k value to use. Default is 40 value should be between 0 and 100
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param topP The top-p value to use. Default is 0.95 value should be between 0 and 1
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param seed The seed to use. Default is 1234 value should be integer
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param type The type of image. Options are 'png', 'jpeg', 'webp', 'heic', 'heif'. Default is 'png'
#'
#' @return Generated text
#' @export
#' @examples
#' \dontrun{
#' library(gemini.R)
#' setAPI("YOUR_API_KEY")
#' gemini_image(image = system.file("docs/reference/figures/image.png", package = "gemini.R"))
#' }
#'
#' @importFrom httr2 request req_url_query req_headers req_body_json req_perform resp_body_json
#' @importFrom base64enc base64encode
#' @importFrom cli cli_alert_danger cli_status_clear cli_status
#'
#' @seealso https://ai.google.dev/docs/gemini_api_overview#text_image_input
#'
gemini_image <- function(image = NULL, prompt = "Explain this image", model = "2.0-flash",
temperature = 1, maxOutputTokens = 8192, topK = 40, topP = 0.95,
seed = 1234, type = "png") {
if (is.null(prompt)) {
cli_alert_danger("{.arg prompt} must not NULL")
return(NULL)
}
if (missing(image)) {
image <- system.file("docs/reference/figures/image.png", package = "gemini.R")
}
if (!is.character(prompt)) {
cli_alert_danger("{.arg prompt} must be given as a STRING")
return(NULL)
}
if (Sys.getenv("GEMINI_API_KEY") == "") {
cli_alert_danger("Please set the {.envvar GEMINI_API_KEY} with {.fn setAPI} function.")
return(NULL)
}
if (!(type %in% c("png", "jpeg", "webp", "heic", "heif"))) {
cli_alert_danger("Error: Parameter 'type' must be one of 'png', 'jpeg', 'webp', 'heic', 'heif'")
return(NULL)
}
# Model
supported_models <- c("2.0-flash", "2.0-flash-lite", "2.5-pro-exp-03-25")
if (!(model %in% supported_models)) {
cli_alert_danger("Error: Parameter 'model' must be one of '2.0-flash', '2.0-flash-lite', '2.5-pro-exp-03-25'")
return(NULL)
}
model_query <- paste0("gemini-", model, ":generateContent")
if (temperature < 0 | temperature > 2) {
cli_alert_danger("Error: Parameter 'temperature' must be between 0 and 2")
return(NULL)
}
if (topP < 0 | topP > 1) {
cli_alert_danger("Error: Parameter 'topP' must be between 0 and 1")
return(NULL)
}
if (topK < 0 | topK > 100) {
cli_alert_danger("Error: Parameter 'topK' must be between 0 and 100")
return(NULL)
}
if (!is.numeric(seed) || seed %% 1 != 0) {
cli_alert_danger("Error: Parameter 'seed' must be an integer")
return(NULL)
}
url <- paste0("https://generativelanguage.googleapis.com/v1beta/models/", model_query)
api_key <- Sys.getenv("GEMINI_API_KEY")
mime_type <- paste0("image/", type)
sb <- cli_status("Gemini is answering...")
req <- request(url) |>
req_url_query(key = api_key) |>
req_headers("Content-Type" = "application/json") |>
req_body_json(list(
contents = list(
parts = list(
list(
text = prompt
),
list(
inline_data = list(
mime_type = mime_type,
data = base64encode(image)
)
)
)
),
generationConfig = list(
temperature = temperature,
maxOutputTokens = maxOutputTokens,
topP = topP,
topK = topK,
seed = seed
)
))
resp <- req_perform(req)
cli_status_clear(id = sb)
candidates <- resp_body_json(resp)$candidates
outputs <- unlist(lapply(candidates, function(candidate) candidate$content$parts))
return(outputs)
}
#' @title Generate text from text and image with Gemini Vertex API
#' @description Generate text from text and image with Gemini Vertex API
#'
#' @param image The image to generate text
#' @param prompt A character string specifying the prompt to use with the image. Defaults to "Explain this image".
#' @param type A character string specifying the image type ("png", "jpeg", "webp", "heic", "heif"). Defaults to "png".
#' @param tokens A list containing the API URL and key from token.vertex() function.
#' @param temperature The temperature to use. Default is 1 value should be between 0 and 2
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param maxOutputTokens The maximum number of tokens to generate.
#' Default is 8192 and 100 tokens correspond to roughly 60-80 words.
#' @param topK The top-k value to use. Default is 40 value should be between 0 and 100
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param topP The top-p value to use. Default is 0.95 value should be between 0 and 1
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param seed The seed to use. Default is 1234 value should be integer
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#'
#' @return A character string containing Gemini's description of the image.
#'
#' @importFrom cli cli_alert_danger cli_status cli_status_clear
#' @importFrom httr2 request req_headers req_body_json req_perform resp_body_json
#' @importFrom base64enc base64encode
#'
#' @export
gemini_image.vertex <- function(image = NULL, prompt = "Explain this image", type = "png", tokens = NULL,
temperature = 1, maxOutputTokens = 8192, topK = 40, topP = 0.95, seed = 1234) {
if (is.null(image)) {
cli_alert_danger("{.arg image} must not be NULL")
return(NULL)
}
if (!is.character(prompt)) {
cli_alert_danger("{.arg prompt} must be given as a STRING")
return(NULL)
}
if (is.null(tokens)) {
cli_alert_danger("{.arg tokens} must not be NULL. Use token.vertex() function to generate tokens.")
return(NULL)
}
if (!(type %in% c("png", "jpeg", "webp", "heic", "heif"))) {
cli_alert_danger("Error: Parameter 'type' must be one of 'png', 'jpeg', 'webp', 'heic', 'heif'")
return(NULL)
}
# Parameters validation
if (temperature < 0 | temperature > 2) {
cli_alert_danger("Error: Parameter 'temperature' must be between 0 and 2")
return(NULL)
}
if (topP < 0 | topP > 1) {
cli_alert_danger("Error: Parameter 'topP' must be between 0 and 1")
return(NULL)
}
if (topK < 0 | topK > 100) {
cli_alert_danger("Error: Parameter 'topK' must be between 0 and 100")
return(NULL)
}
if (!is.numeric(seed) || seed %% 1 != 0) {
cli_alert_danger("Error: Parameter 'seed' must be an integer")
return(NULL)
}
mime_type <- paste0("image/", type)
request_body <- list(
contents = list(
list(
role = "user",
parts = list(
list(
inline_data = list(
mime_type = mime_type,
data = base64encode(image)
)
),
list(
text = prompt
)
)
)
),
generationConfig = list(
temperature = temperature,
maxOutputTokens = maxOutputTokens,
topP = topP,
topK = topK,
seed = seed
)
)
sb <- cli_status("Gemini is answering...")
response <- request(tokens$url) |>
req_headers(
"Authorization" = paste0("Bearer ", tokens$key),
"Content-Type" = "application/json"
) |>
req_body_json(request_body) |>
req_perform() |>
resp_body_json()
cli_status_clear(id = sb)
return(response$candidates[[1]]$content$parts[[1]]$text)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.