Nothing
#' @title Generate text from text and image with Gemini
#' @description Generate text from text and image with Gemini
#' @param image The image to generate text
#' @param prompt The prompt to generate text, Default is "Explain this image"
#' @param model The model to use. Options are "2.0-flash", "2.0-flash-lite", "2.5-pro-exp-03-25". Default is '2.0-flash'
#' see https://ai.google.dev/gemini-api/docs/models/gemini
#' @param temperature The temperature to use. Default is 1 value should be between 0 and 2
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param maxOutputTokens The maximum number of tokens to generate.
#' Default is 8192 and 100 tokens correspond to roughly 60-80 words.
#' @param topK The top-k value to use. Default is 40 value should be between 0 and 100
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param topP The top-p value to use. Default is 0.95 value should be between 0 and 1
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param seed The seed to use. Default is 1234 value should be integer
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param type The type of image. Options are 'png', 'jpeg', 'webp', 'heic', 'heif'. Default is 'png'
#'
#' @return Generated text
#' @export
#' @examples
#' \dontrun{
#' library(gemini.R)
#' setAPI("YOUR_API_KEY")
#' gemini_image(image = system.file("docs/reference/figures/image.png", package = "gemini.R"))
#' }
#'
#' @importFrom httr2 request req_url_query req_headers req_body_json req_perform resp_body_json
#' @importFrom base64enc base64encode
#' @importFrom cli cli_alert_danger cli_status_clear cli_status
#'
#' @seealso https://ai.google.dev/docs/gemini_api_overview#text_image_input
#'
gemini_image <- function(image = NULL, prompt = "Explain this image", model = "2.0-flash",
temperature = 1, maxOutputTokens = 8192, topK = 40, topP = 0.95,
seed = 1234, type = "png") {
# 1. validate_params 함수 사용
if (!validate_params(prompt, model, temperature, topP, topK, seed, api_key = TRUE)) {
return(NULL)
}
# 이미지 파일 검증
if (missing(image)) {
image <- system.file("docs/reference/figures/image.png", package = "gemini.R")
}
# 6. 이미지 파일 존재 여부 확인
if (!file.exists(image)) {
cli_alert_danger("Image file does not exist: ", image)
return(NULL)
}
# 7. type 파라미터 검증 위치 이동
if (!(type %in% c("png", "jpeg", "webp", "heic", "heif"))) {
cli_alert_danger("Error: Parameter 'type' must be one of 'png', 'jpeg', 'webp', 'heic', 'heif'")
return(NULL)
}
model_query <- paste0("gemini-", model, ":generateContent")
url <- paste0("https://generativelanguage.googleapis.com/v1beta/models/", model_query)
api_key <- Sys.getenv("GEMINI_API_KEY")
mime_type <- paste0("image/", type)
sb <- cli_status("Gemini is analyzing image...")
# 8. 이미지 인코딩 오류 처리
image_data <- NULL
tryCatch({
image_data <- base64encode(image)
}, error = function(e) {
cli_status_clear(id = sb)
cli_alert_danger(paste0("Error encoding image: ", e$message))
return(NULL)
})
if (is.null(image_data)) {
return(NULL)
}
# 2. generation_config 별도 리스트 사용
generation_config <- list(
temperature = temperature,
maxOutputTokens = maxOutputTokens,
topP = topP,
topK = topK,
seed = seed
)
# 요청 본문도 별도 리스트로 구성
request_body <- list(
contents = list(
parts = list(
list(
text = prompt
),
list(
inline_data = list(
mime_type = mime_type,
data = image_data
)
)
)
),
generationConfig = generation_config
)
req <- request(url) |>
req_url_query(key = api_key) |>
req_headers("Content-Type" = "application/json") |>
req_body_json(request_body)
resp <- req_perform(req)
# 3. 상태 코드 검증 추가
if (resp$status_code != 200) {
cli_status_clear(id = sb)
cli_alert_danger(paste0("Error in generate request: Status code ", resp$status_code))
return(NULL)
}
cli_status_clear(id = sb)
candidates <- resp_body_json(resp)$candidates
outputs <- unlist(lapply(candidates, function(candidate) candidate$content$parts))
return(outputs)
}
#' @title Generate text from text and image with Gemini Vertex API
#' @description Generate text from text and image with Gemini Vertex API
#'
#' @param image The image to generate text
#' @param prompt A character string specifying the prompt to use with the image. Defaults to "Explain this image".
#' @param type A character string specifying the image type ("png", "jpeg", "webp", "heic", "heif"). Defaults to "png".
#' @param tokens A list containing the API URL and key from token.vertex() function.
#' @param temperature The temperature to use. Default is 1 value should be between 0 and 2
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param maxOutputTokens The maximum number of tokens to generate.
#' Default is 8192 and 100 tokens correspond to roughly 60-80 words.
#' @param topK The top-k value to use. Default is 40 value should be between 0 and 100
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param topP The top-p value to use. Default is 0.95 value should be between 0 and 1
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#' @param seed The seed to use. Default is 1234 value should be integer
#' see https://ai.google.dev/gemini-api/docs/models/generative-models#model-parameters
#'
#' @return A character vector containing Gemini's description of the image.
#'
#' @importFrom cli cli_alert_danger cli_status cli_status_clear
#' @importFrom httr2 request req_headers req_body_json req_perform resp_body_json
#' @importFrom base64enc base64encode
#'
#' @export
gemini_image.vertex <- function(image = NULL, prompt = "Explain this image", type = "png", tokens = NULL,
temperature = 1, maxOutputTokens = 8192, topK = 40, topP = 0.95, seed = 1234) {
# 1. Use validate_params function
if (!validate_params(prompt, NULL, temperature, topP, topK, seed, api_key = FALSE, tokens = tokens)) {
return(NULL)
}
# Validate image file
if (is.null(image)) {
cli_alert_danger("{.arg image} must not be NULL")
return(NULL)
}
# 6. Check if image file exists
if (!file.exists(image)) {
cli_alert_danger("Image file does not exist: ", image)
return(NULL)
}
# 7. Move type parameter validation
if (!(type %in% c("png", "jpeg", "webp", "heic", "heif"))) {
cli_alert_danger("Error: Parameter 'type' must be one of 'png', 'jpeg', 'webp', 'heic', 'heif'")
return(NULL)
}
mime_type <- paste0("image/", type)
# 8. Handle image encoding error
image_data <- NULL
tryCatch({
image_data <- base64encode(image)
}, error = function(e) {
cli_alert_danger(paste0("Error encoding image: ", e$message))
return(NULL)
})
if (is.null(image_data)) {
return(NULL)
}
# 2. Use separate list for generation_config
generation_config <- list(
temperature = temperature,
maxOutputTokens = maxOutputTokens,
topP = topP,
topK = topK,
seed = seed
)
request_body <- list(
contents = list(
list(
role = "user",
parts = list(
list(
inline_data = list(
mime_type = mime_type,
data = image_data
)
),
list(
text = prompt
)
)
)
),
generationConfig = generation_config
)
# 4. Improve status message
sb <- cli_status("Gemini Vertex is analyzing image...")
# Separate API request for status code validation
req <- request(tokens$url) |>
req_headers(
"Authorization" = paste0("Bearer ", tokens$key),
"Content-Type" = "application/json"
) |>
req_body_json(request_body)
resp <- req_perform(req)
# 3. Add status code validation
if (resp$status_code != 200) {
cli_status_clear(id = sb)
cli_alert_danger(paste0("Error in generate request: Status code ", resp$status_code))
return(NULL)
}
cli_status_clear(id = sb)
# 5. Handle response same as gemini_image function
response <- resp_body_json(resp)
candidates <- response$candidates
outputs <- unlist(lapply(candidates, function(candidate) candidate$content$parts))
return(outputs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.